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present in LAR cases. Spanwise vortices (ωZ) contour plots in the x-y plane (Figure 3-10) also 

show smooth rolled up vortices without any activity at the tail; the instabilities are mainly behind 

the head in the slumping phase. 

 

 

Figure 3-7 Density contour for HAR lock-exchange case (a) at t/t0 =3, (b) at t/t0 =7 (end of 

slumping phase) 

 

Figure 3-8 Stream-wise velocity (Ux) for HAR lock-exchange case (a) at t/t0 =3, (b) at t/t0 =7 
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Figure 3-9 Vertical velocity (Uy) for LAR lock-exchange case (a) at t/t0 =3, (b) at t/t0 =7 

 

Figure 3-10 Spanwise vorticity (ωZ) for HAR lock-exchange case (a) at t/t0 =3, (b) at t/t0 =7 

Figure 3-8 and Figure 3-9 show the instantaneous streamwise velocity (Ux) and vertical 

velocity (Uy) components for two time instances in the slumping phase. Similar to LAR cases, a 

distinct interface with zero streamwise velocity is observed in the interface.  The reflected fluid 

(bore) with the original density propagates toward the front with a maximum speed of 1.85 ± 0.1 

times the current’s front, similar to LAR cases. The instabilities in the interface are also seen in 

the Ux contour plots of Figure 3-8b. The snapshot of the vertical velocity contours at different 

time instances show similar flow structures as the LAR cases embedded just near the head. 
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Since, no constant feeding of the dense fluid at the tail is observed for the HAR lock-exchange 

case, the tail region shows a calm and negligible vertical velocity value (Figure 3-9b). 

(b) Analysis of Buoyancy Parameters: Reduced gravity at the head(𝑔ℎ𝑒𝑎𝑑
′̅̅ ̅̅ ̅̅ ̅), and the dense 

current, front-height (ℎ𝐹
̅̅ ̅), and mean buoyancy at the head (𝐵ℎ𝑒𝑎𝑑

̅̅ ̅̅ ̅̅ ̅ = 𝑔ℎ𝑒𝑎𝑑
′̅̅ ̅̅ ̅̅ ̅ ∗ 𝐴ℎ𝑒𝑎𝑑)  are shown 

in Figure 3-11. Distinct differences in the buoyancy of the fluid in the head are evident between 

the LAR and HAR L-E cases. As the lock is released, the head of the current carries a significant 

larger fraction of the original dense fluid in the lock and as it propagates downstream, the dense 

fluid continues to dilute due to mixing. This fraction of the buoyancy in head is 70%-80% for 

lock aspect ratios of greater than 1 (see Figure 3-5b).  As the current propagates, the head region 

is continuously diluted. This is mainly due to the fact that in the HAR case, once the lock is 

removed to spread the dense fluid, a significant amount of dense fluid appears in the current’s 

head and there is little dense fluid left in the tail region to feed the current’s head as it moves 

downstream. Since no fluid behind the head continues to feed the current’s head and the ambient 

fluid entrains into the current head, dilution is observed at the current’s head and quantitatively 

decreases the reduced gravity in the leading edge. Most of the mixing happens near the head 

region. The 𝑔′of the overall dense current exceeds the 𝑔′at the head during an earlier time (t/t0 = 

3.5) in the HAR cases than in the LAR cases (t/t0 = 12), indicating that overall mixing in the 

dense current compared to mixing at the head is quantitatively higher for HAR cases than LAR 

cases. Therefore, significant differences in the flow physics and mixing patterns are seen in the 

slumping phase of LAR and HAR lock-exchange cases.  
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Figure 3-11 Non-dimensional reduced gravity (g’) at head and dense current, buoyancy at head, 

and front height versus non-dimensional time for HAR lock-exchange case in slumping phase 

(c) Analysis of Turbulence Processes and Turbulent Kinetic Energy (TKE): Next, we 

investigate the TKE production mechanisms and TKE energetics in a HAR lock-exchange 

horizontal case. The time-averaged shear, TKE, shear production of TKE, and buoyancy 

production of TKE are shown in Figure 3-12. Unlike the LAR cases, high shear occurs near the 

head and high TKE production due to shear occurs near the head region. In fact, beyond two lock 

heights there is hardly any TKE production from either shear or buoyancy. With the 

advancement of the current’s flow, no reflected dense flow feeds the tail behind the head, 

resulting in a smooth tail without any instabilities or intense activities.  

In summary, for HAR L-E currents, the head carries a substantial fraction of the buoyancy of the 

original dense current, resulting in the mixing and high dilution of the original dense fluid. Not 

much dense fluid is left in the body of the current. TKE production due to shear and buoyancy is 
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dominant only in the head region. Our analysis has revealed that for the same height of the lock 

(which is the same initial potential energy), the aspect ratio of the lock dictates the dynamics 

near the head region. The 2-D LES substantiate the theory that fraction of the buoyancy of the 

original dense fluid in the lock carried by the head is 20%-60% when the length of the lock is 

larger than the lock height and it is 70%-80% when the lock height is higher than the lock length. 

Further, the TKE production mechanisms are also influenced by the lock aspect ratio.

   

Figure 3-12 Energetics in HAR lock-exchange case in reference frame (a) Mean Shear (b) TKE 

production from shear, (c) TKE production from buoyancy, (d) TKE 
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3.2.1.3 Effect of Slope (θ) on LAR Lock-Exchange Cases 

Next, we discuss the effect of the slope on flow dynamics. To demonstrate the slope’s effect on 

flow evolution and corresponding flow structures, four LAR lock-exchange cases are analyzed 

for slope varying from 0 to 20
0
, with other parameters assumed to be constant, corresponding to 

LELA, LEHA LES5, LES10, and LES20 in Table 3-1. Significant differences in the flow 

properties and structures are observed with increasing slope. Froude’s number (non-dimensional 

front velocity (UF /Ub) ) plotted against non-dimensional time for different sloping LAR lock-

exchange cases is shown in Figure 3-13. For the sloping cases, current flows through short 

slumping phase followed by an acceleration phase.  Figure 3-14 shows density contour plots 

where the current’s front is at x/H≈7 for all cases. The 2-D K-H roll ups are generated behind the 

current’s head for all sloping cases; however, those roll up structures break down into complex 

structures as the slope increases. With the increasing value of slope, more dense fluid feeds the 

current’s head from behind, causing the current’s head to advance faster and with elevated 

height. The front height increases from 0.5 H for a horizontal case to 0.6 H for a 20
0
 sloping 

case. Intense mixing occurs in the body of the current in higher sloping cases. The vigorous 

activities in the body cause the flow structures to stretch both horizontally and vertically as the 

bottom slope increases.  
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Figure 3-13 Non-dimensional front velocity plotted against non-dimensional time for sloping 

case. The Froude’s number at inlet (based on height of inlet) is 0.87 for all cases. 

To address the question of whether the difference in flow structures is related to the instabilities, 

we analyze the shear at different locations of the current: x = 1H, 2H, 3H, and 4H. Figure 3-15 

shows the profiles of shear for slope = 0
o
, 5

o
, 10

o
, and 20

o
. Near the wall, there is high shear, 

which causes the shear generation of TKE. At the interface, shear reversal occurs with regions of 

negative shear just above the interface. With an increasing slope, the depth of the shear layer (the 

region of high shear) increases indicating higher shear production of TKE for sloped cases. As 

slope increases, the depth at which shear reversal occurs is pushed higher.  As slope increases 

beyond 10
o
, regions of shear reversal occur multiple times within the shear, indicating 

instabilities and resulting in pockets of negative and positive shear-generated TKE production. 

Next, we investigate TKE production and TKE for sloping cases.  
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 We investigate the turbulence kinetic energy production mechanisms for LES10 and 

LES20 in this section. Figure 3-17 shows the mean shear, TKE production from shear, TKE 

production from buoyancy, and TKE for sloping cases of 10
o
 and 20

o
. Increasing slope increases 

the wall-shear and shear at the interface, as seen in Figure 3-17a-b. Increasing shear contributes 

to increased shear production, as seen in Figure 3-17c-d. Regions of high TKE shear production 

at the interface appear with increasing slope. Slope has a significant effect on buoyancy 

production, as seen in Figure 3-18. TKE is shown in Figure 3-18, and it is very interesting to 

note higher slope increases TKE more than 10 times. This high TKE is mainly due to enhanced 

buoyancy production. To summarize, dense currents over a slope after initial transience, goes 

through an acceleration phase. Depth of the shear layer increases with increasing slope resulting 

in extended region of TKE shear production. Slope enhances TKE mainly due to increased TKE 

buoyancy production. Increasing slope mainly enhances the shear instabilities with presence of 

shear-reversals within the current for higher slopes.  Increased mixing with increasing slope is 

mainly due to enhanced shear-instabilities within the current. 
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Figure 3-14 Density contours for sloping LAR lock-exchange cases (a) LELA (b) LES5 (c) 

LES10 and (d) LES20 

 
 

(a) 
(b) 
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Figure 3-15 Streamwise mean velocity profile at different x/H locations for (a) horizontal, (b) 5
o
 

slope, (c) 10
o
 slope, (d) 20

o 
slope.

 

Figure 3-16 Contours of (a) Mean Shear (b) TKE production from shear, (c) TKE production 

from buoyancy, (d) TKE for a LES10 and LES20 cases respectively 

(c) (d) 
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Figure 3-17. Continued 

3.2.1.4. Effect of  𝒈′on LAR Lock-Exchange Cases 

In buoyancy-driven density current flow, reduced gravity (𝑔′ )is one of the key parameters that 

contributes to the buoyancy force that drives the current in time and space. Therefore, reduced 
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gravity has an effect on the dynamics of flow evolution and mixing behavior in the density 

current. To demonstrate the dependency of  𝑔′ on mixing, we varied  𝑔′ from 0.0025 to 0.45 

m/s
2
, which corresponds to Ref in the range of 950 to 12000. As  𝑔′ increases, the buoyancy force 

increases and the current advances with higher speed, subsequently, the local Ref increases. The 

flow structures are visualized in density contour for all four cases in Figure Figure 3-18. 

Differences in the flow structures exist between the low and high reduced gravity cases.  

 

Figure 3-18 2-D density contour plots for four LAR lock-exchange case, (a) g’=0.0025m/s2, Ref 

≈950 (b) g’=0.05m/s2, Ref ≈3000 (c) g’=0.2m/s2, Ref ≈8500 (b) g’=0.45m/s2, Ref ≈12000 at t/t0 

=12.5 

For the low  𝑔′ case (Ref ≈950), a smooth current interface exists near the current’s head, and 

with an increasing  𝑔′, increasing K-H billows appear in the head region of the current. With an 

increasing  𝑔′, the vertical stretching of the K-H billows enhances. The flow structures show a 
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resemblance to a highly intense shear interface in all high  𝑔′ cases (Figure 3-18b, c, and d). 

From the flow structures, it is obvious that the overall mixing in the dense currents for a low 

 𝑔′case (Ref ≈950) is significantly less compared to that of other high  𝑔′ cases. But, if we 

analyze the mixing only in the current’s head, similar to Hallworth et al.’s (1996) experimental 

study, the dilution of the current’s head due to the entrainment of the ambient fluid into the 

leading edge is similar both qualitatively and quantitatively for all the variable  𝑔′ cases, which 

substantiates the observation of Hallworth et al. (1996). Nonetheless, Cenedese and Adduce 

(2008) showed the overall mixing (not only the mixing at the head, but in the whole dense 

current) dependency on Re for density-driven currents on a  sloping bottom. In essence, 

considering the mixing in the overall dense current, our results visualized from 2-D density 

contours indicate that the mixing dependency on Ref, and thus reinforcing Cenedese and 

Adduce’s (2008) experimental study results. 

 

3.3. Analysis of Constant Flux Release 

A total of four constant flux release experiments are conducted with varying slopes. Simulations 

are performed in the domain of Lx = 2.4 m and height H = 0.2 m with a dense fluid inflow rate of 

0.003 m
2
/s and reduced gravity of 0.45 m/s

2
. The slope is varied from 0 to 20

0
. As the dense fluid 

enters the domain through an orifice, horizontally moving density current forms that entrain the 

lighter ambient fluid into the current. The length scale is adopted as orifice height (h0) instead of 

channel height (H) for constant flux cases. In the following sections, we examine the factors that 

influence the motion of the current.  
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Table 3-2 Constant Flux Cases 

 

 

 

3.3.1. Flow Properties and Flow Structures 

Significantly less work has been conducted on the turbulence flow structures and mechanisms of 

TKE production in constant flux or continuous release gravity currents. In this section, we 

present the results of analysis of the flow properties and flow structures for a horizontal dense 

overflow density current corresponding to the case-CFH (Table 3-2). Similar to a lock-exchange 

case, reduced gravity at the head (𝑔ℎ𝑒𝑎𝑑
′̅̅ ̅̅ ̅̅ ̅) and overall dense current, front height (ℎ𝐹

̅̅ ̅), and 

buoyancy at the head (𝐵ℎ𝑒𝑎𝑑
̅̅ ̅̅ ̅̅ ̅) are estimated by scaling with initial reduced gravity, channel 

height (H), and initial buoyancy. Figure 19 shows that the reduced gravity in the current’s head 

reduces drastically after the initial transition period, which is unlike in a LAR lock-exchange 

case, thus indicating high mixing in the head region. Also shown in Figure 3-19(left) is the 

reduced gravity calculated over the entire current at each instance of time. It should be noted that 

buoyancy in the domain increases with time, due to the continuous addition of dense fluid.  

Reduced gravity at head decreases with increasing slope as seen in Figure 3-19(right) due to 

increased mixing and dilution at the head. Constant feeding of dense fluid from the inlet source 

also dictates the behavior of the current’s head advancement downstream. This characteristic in 

 Slope g'(m/s
2
) Uf(m/s) Ub (m/s) Ref Fr Uq(m/s) 

CFH 0 0.45 0.0455 0.1 5712 0.455 0.1 

CFS5 5 0.45 0.053 0.1224 8816 0.432 0.1 

CFS10 10 0.45 0.06 0.141 13960 0.424 0.1 

CFS20 20 0.45 0.064 0.1732 21925 0.369 0.1 
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dense overflow is quite different than in a lock-exchange case and thus, flow structures and 

mixing behavior would apparently be different than that of a lock-exchange case. 

  

Figure 3-19 (left) Scaled reduced gravity, buoyancy at head, and front height versus time for 

constant flux case for 0
o 
slope , (right)  Scaled reduced gravity vs. slope 

2-D K-H instabilities have been predominantly analyzed and illustrated by studies on constant 

volume (lock-exchange) type density currents (Hartel (2000); Cantero et al. (2007, 2008); Ooi 

(2007); Ozgokmen et al. (2004)), whereas very few studies have reported observations of the 

dynamics of flow structures on constant flux density current systems. Instantaneous density 

contours in the x-y plane at different time instances are presented for constant flux cases with a 

Ref of ~5000 in Figure 3-20. At an earlier time of flow evolution, several K-H billows are 

formed behind the head of the current only, while turbulent eddies and instabilities resulting in 

mixing are evident both in head and body of the current. With the advancement of time, the 

current spreads further downstream and instabilities are enhanced within the current’s body, and 

the head continues to be diluted, containing more mixed fluid with an elevated front height, 

unlike the lock-exchange density current. In lock-exchange current, dense fluid is present behind 
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the head throughout the slumping phase. These observations are also supported by the flow 

structures seen in the vorticity plots in Figure 3-21. From a visual inspection of the contour plots 

of the vortices (ωz) in Figure 3-21, strong turbulence activity exist predominantly behind the 

head that causes more light fluid to be entrained into the dense current and resulting in the front 

to keep growing with time. The vorticity (ωz) structures for all the time instances clearly indicate 

the presence of enhanced and more energetic turbulence structures with increased turbulence 

activity in the constant flux case compared to the lock-exchange case. Due to the above facts, 

enhanced mixing is present for constant flux cases compared to lock-exchange cases within a 

similar range of Ref. 

 

Figure 3-20 2-D density contour (a) at t/t0 =10, (b) at t/t0 =20, (c) at t/t0 =30 
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Figure 3-21 Spanwise vorticity contours (ωZ) in constant flux case (a) at t/t0 =10, (b) at t/t0 =20, 

(c) at t/t0 =30 

The instantaneous streamwise velocity (Ux) and vertical velocity (Uy) components are presented 

in Figure 3-22 and Figure 3-23 respectively as the current develops in time. The dense current 

spreads with a constant characteristic of streamwise velocity without having the distinctive 

overlying reverse flow of ambient fluid throughout the current’s body. The vertical velocity 

indicates the entrainment of the ambient fluid vertically into the dense current through the shear 

interface. Strong pockets of vertical velocity entering the current are present in the head region of 

the current, unlike in a lock-exchange system. 
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Figure 3-22 Stream-wise velocity (Ux) for constant flux case (a) at t/t0 =10, (b) at t/t0 =20, (c) at 

t/t0 =30

 

Figure 3-23 Vertical velocity (Uy)  for constant flux case case (a) at t/t0 =10, (b) at t/t0 =20, (c) at 

t/t0 =30 
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3.3.2 Analysis of Turbulence Processes and Turbulent Kinetic Energy for a Constant Flux 

Case 

Next, we analyze the turbulence production mechanisms. Figure 3-24 shows the mean shear, 

Reynolds shear stress, and buoyancy flux.  Regions of negative mean shear occurs near the head 

and at the interface, while positive mean shear occurs near the wall due to the no-slip boundary 

condition. The TKE production from shear (Ps) and buoyancy (PB) is dominant just behind the 

current’s head and gradually diminishes away from the current’s head further upstream. In all 

cases, the density contour captures the interfaces and the activities appear within this interface. 

However, the maximum TKE is apparently observed at y/H = 0.1, which is an excellent match 

with the experimental studies of Kneller et al. (1999) and the lock-exchange case discussed 

above. 
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Figure 3-24 Energetics in constant flux case in reference frame (a) Mean Shear for 0
o
 slope  (b) 

TKE shear production from  for 0
o
 slope , (c) TKE buoyancy production  for 0

o
 slope  , (d) TKE 

for 0
o
 slope  , (e) TKE shear production from  for 10

o
 slope , (f) TKE buoyancy production  for 

10
o
 slope  , (g) TKE for 10

o
 slope   

In summary, for constant flux density currents, head of the current carries dense fluid and 

undergoes mixing and is diluted due to entrainment of the ambient fluid. Increasing slope 

enhances the mixing at the head due to enhanced TKE shear and buoyancy production, which 
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occurs mainly at the head of the current. Strong 2-D Kelvin-Helmholtz instability develops at the 

shear interface throughout current.  

 

3.4. Conclusion 

2-D Large eddy simulation (LES) was conducted to understand the flow structures and 

turbulence processes involved in the mixing of both instantaneous release and continuous dense 

currents over sloping smooth surfaces.  We investigated the influence of lock aspect ratio, 

Reynolds number and slope on the flow structures and mixing process for lock exchange flows. 

LAR and HAR cases simulations have been conducted with lock aspect ratios varying from 

0.025-3. Flow Reynolds number has been fixed (~5000).   During the slumping phase of dense 

currents over horizontal surfaces, lock aspect-ratio influences the buoyancy carried by the head, 

and thus alters the mixing processes. The fraction of original buoyancy in the lock carried by the 

head varied from 20%- 80% with increasing lock aspect ratios. When the lock-length is more 

than the lock-height, the head of the current carries only a fraction of the original buoyancy in 

the lock, undergoes mixing very quickly after the lock release, and does not undergo further 

dilution, because dense fluid is constantly supplied by the body of the current until the end of the 

slumping phase. For the HAR, current head carries a higher fraction of the buoyancy than LAR, 

and the dense fluid in the head is diluted by the end of slumping phase. Mixing occurs mainly 

near the head region for HAR, whereas it mixing is also strong in tail region of the current.. The 

difference in mixing between LAR and HAR is dictated by TKE shear and buoyancy production, 

which occurs both in the head and tail of the current for LAR, whereas TKE production occurs 

mainly near the head for HAR. Reynolds stresses transport TKE from the interface to within the 

current. In a LAR case, the flow structures and mixing regions are stretched from the leading 
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edge to the current’s tail, whereas in HAR the instabilities, mixing, and TKE production were 

observed to occur near the current’s head up to two lock lengths. 

 Next, the effect of slope has been analyzed. For this purpose, we fixed the reduced 

gravity and lock aspect ratio and varied the slope.  Lock exchange currents over slope after an 

initial transient stage reach an acceleration phase where the velocity gradually increases to a 

maximum before they go through a viscous phase. The analysis has been restricted to 

acceleration phase. During the acceleration phase, increasing slope increases the fraction of 

buoyancy carried by the head. For lock AR of 0.33, the fraction of buoyancy carried by the head 

increases from 40%-68% for slopes from 0
o
, 10

o
 and 20

o
. Similar to horizontal lock exchange 

case, 2-D K-H roll ups are generated behind the current’s head for sloping cases; however, those 

roll up structures break down into complex structures as the slope increases. With the increasing 

value of slope, more dense fluid feeds the current’s head from behind, causing the current’s head 

to advance faster and with elevated height. E.g., the front height increases from 0.5 H for a 

horizontal case to 0.6 H for a 20
0
 sloping case. Intense mixing occurs in the body of the current 

in higher sloping cases. The vigorous activities in the body cause the flow structures to stretch 

both horizontally and vertically as the bottom slope increases. The shear layer near the wall is 

enhanced with an increasing slope, resulting in higher TKE production due to shear. The 

structures are elongated, and regions of shear reversal appear when the slope exceeds 10
o
. 

Finally, we investigate the effect of reduced gravity on the flow structures. The analysis revealed 

that reduced gravity has a direct influence on Ref and hence, the flow structures and overall 

mixing in a dense current are altered with varied g’.  

 Significant differences exist between lock-exchange release and constant flux release 

currents. In lock-exchange currents, the fraction of the buoyancy in the head dictates TKE 
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production, whereas in constant flux currents, though the head carries a significant fraction of the 

buoyancy at the initial time, due to the continuous generation of buoyancy in the system, the 

shear and density gradients generated near the head continuously cause TKE production. Unlike 

the HAR L-E currents, both mixing and TKE production occur only near the head, the 

continuous buoyancy input results in mixing in the entire length of the current. In continuous 

release currents, TKE generated from buoyancy is an order of magnitude higher than that 

generated from shear.  

 This work is offered as a contribution to our knowledge of flow structures and turbulence 

mechanisms and the differences between lock-exchange and constant flux density currents. 

Differences in the flow structures, TKE generation mechanisms, and buoyancy in the head vs. 

the body of the current in lock-exchange and constant flux dense currents clearly indicate that 

differences in mixing and entrainment between these two exist. The flow characteristics in terms 

of 2-D instabilities, buoyancy at the current’s head and in the dense current overall, and 

turbulence energetics (i.e. TKE production from shear and buoyancy, and mean shear and TKE) 

serve as valuable metrics to study density currents. The lessons learned from this analysis will 

guide us to explore a 3-D system. In future work, we will extend our work to 3-D density 

currents Hence, 2-D analysis is important because it reveals the differences in the fundamental 

instability mechanisms between the lock exchange and constant flux release density currents. 
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CHAPTER FOUR: OVERALL MIXING COMPUTATIONAL APPROACH 

4.1 Introduction 

Mixing in density current or overflows plays a fundamental role on predicting and understanding 

the dynamics of dense current propagation which are often encountered in natural environment 

and numerous fields of science and engineering: geosciences, geophysics, hydraulics, limnology, 

oceanography, snow mechanics and weather prediction (Simpson 1997). Turbulent mixing of 

dense and ambient fluid is also a fundamental process for both coastal and deep ocean 

circulation. The mechanism and dynamics of entrainment or mixing in overflows generated at 

high altitudes descending through continental slope to ocean basins have been extensively 

investigated due to the global importance of entrainment dynamics in thermohaline circulation 

(Baines 2001, 2002, Wells and Wettlaufer 2005, Arneborg et al. 2007, Jackson et al. 2008, Peters 

and Johns 2005, Peters et al 2005, Umlauf et al. 2009a, 2009b). For example, Baines and Condie 

(1998) reported that the downslope transport of dense current on the Antarctic continental slope 

largely governed by geostrophy and mixing mechanisms. Recently, Cenedese and Adduce 

(2008) reveal that the final properties of dense water of North Atlantic Deep Water originated 

from Greenland Sea depends primarily on the entrainment of ambient water in the dense current 

flowing through the Denmark Straight, Faroe Bank Channel and continental slope. 

Therefore, better understanding on the physics of mixing in dense current has fundamental 

importance for decades. One of the first analyses on mixing in density current by Prandtl (1952), 

in which the mixing between the head of the dense current and the ambient fluid was first 

proposed. Subsequently several laboratory experiments demonstrate the details of mixing and 

entrainment in canonical lock-exchange density currents systems leading to considerable 

increase in the volume of the dense flow due to mixing (Turner 1959, 1986; Simpson 
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1979,1982,1987; Britter and Linden, 1980; Hallworth et al. 1996; Hacker et al. 1996; Marino et 

al. 2005). Most of the entrainment analysis has been conducted in laboratory tank experiments 

whereas very few numerical modeling studies (Ezer 2005; Ozgokmen et al. 2009; Legg et al. 

2006; Xu et al. 2006; Jackson et al. 2008) have investigated the dynamics of mixing in dense 

overflow cases.  

Even with the recent advancements in computational methods and computing power, 3-D fully-

resolved turbulent density currents simulations are prohibitively expensive.  In this study, a 

highly resolved 2-D and 3-D large eddy simulations are employed to evaluate the mixing in both 

quantitatively and qualitatively in density current systems. 2-D numerical simulations can predict 

few important flow properties (i.e., front height, front velocity, Froude number (Fr) etc.) 

accurate, which are in good consistent with laboratory experiments (Özgökmen and Chassignet 

2002; Ooi et al. 2007). However, the difference of entrainment in 2-D and 3-D simulations still 

remains an open question in mixing analysis of density current. Since the primary mechanisms of 

entrainment of ambient fluid into dense current are Kelvin-Helmholtz instabilities that are 2-D in 

nature, it would be worth looking into the difference of mixing in 2-D and 3-D simulations 

which is the primary objective of this study. It also be noted that 2-D numerical models are 

computationally cheaper compared to 3-D, however it imposes an inherent limitation of not 

allowing spanwise spreading of dense current might unable to capture the comprehensive mixing 

in dense currents. In the process of assessing the mixing behavior in 2-D and 3-D simulations, a 

robust and accurate method for quantification of entrainment rate is employed which has the 

capability of incorporating all the mixed fluid generated at shear interface of dense current. A 

wide range of Reynolds number, 1500<Re<32000 cases within subcritical conditions, 

0.5<Fr<0.65 are simulated within the scope of study. To our knowledge, this is one of the first 
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numerical studies to investigate the mixing in lock-exchange and dense overflows using 2-D and 

3-D LES simulation within the extreme range of Re.  

Similar to entrainment rate, turbulent mixing in two different water masses can be presented as 

mixing efficiency (μ) which has been extensively used in oceanography community. Mixing 

efficiency in stratified flow has immense importance in deep ocean modeling and therefore a 

substantial amount of experimental and numerical studies were carried out to quantify an 

appropriate mixing efficiency value which are still in debated. Most ocean circulation models 

assume the mixing efficiency in turbulent flows as constant value of 0.2. However, the results 

from several numerical and experimental studies conflicts the constant value of mixing 

efficiency as 0.2. 

Lars Arneberg (2001) provided two different mixing efficiency metrics for mixing in patchy 

stratified system. One is the small-scale mixing efficiency defined by the increase of initial 

potential energy due to small-scale turbulent mixing within the patches. In most laboratory and 

numerical experiments, the value for this parameter was found as 0.17~0.2 and this provided the 

insight of turbulent mixing efficiencies. The other, the largescale mixing efficiency is obtained 

after the mixed fluid has collapsed laterally in the system. The later one is relevant parameter for 

determining large-scale, irreversible, changes in the stratification caused by mixing (found as 

0.11). Lars Arneberg (2001) also showed that the large-scale mixing efficiency is always smaller 

than the small-scale mixing efficiency with a factor of 2. Prastowo et al. (2008) estimated the 

mixing efficiency in hydraulically controlled buoyancy driven exchange flows through a 

constriction and estimated the μ where they got the value as 0.11(±0.01). Recently Ilicak (2014) 

studied energetics and mixing efficiency of 3-D lock-exchange flow where they showed that the 

μ in the lock-exchange flow is smaller than 0.2 and it saturates around 0.12 for Re> 2500. Peltier 
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and Caulfield (2003) studied the mixing efficiency in stratified shear flows where they provided 

an explanation of numerical value of μ as 0.2 which is observed in different experimental studies. 

As they reviewed in details, they proposed that the efficiency of the mixing that occurs 

immediately after the initially two-dimensional nonlinear KH instability matures is rather high, 

typically of the order of 70%, but eventually decreases with time and reaches a value of 0.15. In 

this study, the method proposed by Prastowo et.al (2008) is adopted to evaluate the mixing 

efficiency in 2-D and 3-D lock-exchange cases within the scope of our study. 

The primary focus of this study is to get an insight of differences in mixing in 2-D and 3-D LES 

simulations employing dense overflows and lock-exchange cases. We investigate the mixing 

dependency using mixing efficiency and entrainment parameter as metrics. For this purpose an 

in-house large-eddy simulation (LES) is developed to simulate lock-exchange and constant flux 

with extreme range of Re cases. The paper is organized as follows: The details of problem 

formulation and numerical approach are presented in Section 2. Details of entrainment 

quantification in Section 3, Details of mixing efficiency quantification in Section 4 and Results 

are discussed in Section 5. The conclusions are presented in Section 6. 

 

4.2 Details of Entrainment Quantification Methodology  

Traditionally, entrainment has been calculated from first principle using different approaches. 

Morton et al (1956) assumed the velocity at which ambient fluid enters the current (entrainment 

velocity, wE) density current entrains surrounding ambient fluids is linearly proportional to the 

mean down-stream velocity U, which is often expressed in terms of an entrainment ratio defined 

as 𝐸 =
𝑤𝐸

𝑈
.   Ellison & Turner, 1959 and Britter and Linden, 1980 have extended this concept, 

and for bottom gravity currents, Turner (1986) approximated the entrainment rate as the rate of 



67 

 

change of thickness of the current with streamwise distance as 𝐸 =
𝑑ℎ

𝑑𝑥
.  However, at different 

times, the estimation in 𝑤𝐸 or E are very difficult due to the presence of turbulence and 

instabilities in the shear interface. Therefore, in this study, we employed “volume increment” 

method that can estimate entrainment which is similar in concept to previous definitions by 

Meleshko and Van Heijst (1995), Hallworth et al. (1996), Ozgokmen and Chassignet (2002), and 

Ozgokmen et al. (2004). In this section, we demonstrate the different approaches of estimating 

volume of mixed fluid, subsequently entrainment parameter with appropriate detailing which 

were not observed in previous stratified shear flow studies.  

 

4.2.1 Volume Increment Method 

From first principles, entrainment of ambient fluid into the dense currents is the increase in the 

volume of the dense current of the current due to the mixing of ambient and original dense fluid 

due to instabilities and turbulence. Therefore quantifying the volume of mixed fluid would be 

appropriate choice to evaluate entrainment rate spatially and temporally. Entrainment parameter 

is the increase in the volume of the mixed fluid in current at a given time (Vt) per unit volume of 

the current (based on the time scale (t), a length scale (l)̅ , and a velocity scale(v̅)). The volume 

change in the system represents the amount of ambient fluid that entrained into the current. The 

length of the current (l)̅ is calculated between the nose and tail of the current for lock-exchange 

system (Figure 4-1) whereas for constant flux cases the length of current is estimated as the 

distance of the nose from a reference point (x0). In this study we used x0 as 15% of domain length 

from the source of constant dense release for excluding the effect of artificial disturbance we add 

at the inlet to initiate turbulence. Velocity scale (�̅�) is the front velocity (𝑈𝑓) of the current. It is 
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important to note that the volume ‘V’ referring in this study indicates the volume per unit width, 

essentially representing the area of current. 

 
𝐸 =

𝑉(𝑡) − 𝑉0(𝑡)

𝑡 ∗ 𝑙(̅𝑡) ∗ �̅�(𝑡)
 

(4.1) 

 

Figure 4-1 At different time, from these above densities current height profile length scale would 

be for red line (L1-L4), blue line (L2-L5) and black line (L3-L6). 

As it mentioned before that the challenging aspects of calculating E using volume increment 

method is the estimation of volume of the current at a given time t. One can employ two 

approaches to estimate the volume: (1) Interface Identification and (2) Sorting Approach. First 

we discuss the interface identification approach in next section. 

4.2.1.1 Interface Identification: In interface identification approach first step is to identify the 

interface of mixed and ambient fluids to obtain the current height profile (ℎ(𝑥, 𝑡)) employing 

density threshold scheme for a specific density threshold value (ρc) (e.g. Shin et al (2004)). Then, 

the volume of mixed fluid is estimated by integrating the current height profile in streamwise 

direction from leading edge to tail of the current. Density threshold is the lowest density fluid 

that is originated due to the mixing in shear interface at the top of the dense current. In Figure 

4-2, the green line represent the interface of mixed and ambient fluid by fixing a specific density 

threshold value, the black solid line represented the interface of original dense fluid and mixed 

fluid in the dense current. 
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𝜌(𝑥, 𝑦, 𝑡) = {

0 𝑤ℎ𝑒𝑛 𝜌(𝑥, 𝑦, 𝑡) < 𝜌𝑐

1 𝑤ℎ𝑒𝑛 𝜌(𝑥, 𝑦, 𝑡) > 𝜌𝑐
 

(4.2) 

 

Figure 4-2. Visual representation of mixed and dense fluid (span wise averaged density) in lock-

exchange case (above) and constant flux case (below). 

After evaluating the interfaces or density height profile as showed in Figure 4-2, at an 

instantaneous time (t), the volume of mixed and original dense fluid V(t) and the volume of 

original dense fluid V0(t) is estimated by integrating the density height profiles from tail to nose 

of the current, expressed as: 

 
𝑉(𝑡) = ∫  𝒉(𝒙, 𝒕)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑋𝑓

𝑋𝑏

 𝑑𝑥  
(4.3) 

 
𝑉𝑜(𝑡) = ∫  𝒉𝒐(𝒙, 𝒕)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑋𝑓

𝑋𝑏

 𝑑𝑥 (4.4) 

where ℎ̅ is the height of mixed fluid, ℎ𝑜
̅̅ ̅ is the height of initial dense fluid and  Xf ,Xb are the 

position of nose , tail  of current and lock location respectively. 

 The current height profile is evaluated by tagging the density field where it equals to 

density threshold value (ρc). Depending on threshold value, different current height profiles are 

obtained and volume of mixed fluid is estimated using equation (4.3) and (4.4). An analysis is 

performed with varying the density threshold values from 2% to 20% to predict the current 

profile that would provide tangible and accurate volume estimation for entrainment parameter. 
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Figure 4-3Error! Reference source not found. shows the current height profiles for different 

density threshold values at the slumping phase and it is observed that 2% and 10% threshold 

captured almost all the mixed volume in the current where 20% excludes a significant portion of 

mixed fluid that would under predict the entrainment rate. Figure 4-3 also clearly shows that the 

threshold method captures the height profile very precisely for mixed current better than Shin et 

al. (2004) method. 

 

Figure 4-3. Overlaying current height profiles on density contour using Shin et al. (2004) Method 

and threshold method for different threshold value. 

4.2.1.2 Sorting method:  As volume estimation using current height profile approach became 

spurious at later time due to the presence of turbulence and eddies, density sorting method was 

employed for evaluating the volume increment which considered being more exact avoiding 

error in volume estimation. Inspired by the method proposed by Winters et al., 1995 to compute 

the background potential energy, volume of mixed fluid was assessed by similar approach using 

following steps: At first, all the cells in the model domain were sorted and redistributed with 

heavier density fluid in the bottom and lighter density fluid above throughout the domain. Then 

the previous threshold method was employed to calculate the height of distributed current using 

density threshold value and consequently computed the volume of dense and mixed fluids to 

evaluate entrainment. 
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This method provided very accurate volume estimation of mixed fluid by avoiding any spurious 

activates in the shear interface region due to intense turbulence for high Re flows especially in 2-

D simulations. A test case with lock-exchange set up was performed and estimated the volume 

employing both threshold and density sorting methods. It appeared that both methods captured 

almost similar volume of mixed fluid, however the comparison of the two methods would 

explain comprehensively considering some other parameters (i.e., slope, threshold value) and 

would evaluate the entrainment parameter for low to high Ref cases in both lock-exchange and 

constant flux cases. 

Entrainment in full depth release lock-exchange and constant flux density current cases are 

computed employing threshold and sorting approaches discussed above. Accurate estimation of 

entrained fluid mainly depends on capturing the interface of ambient and mixed fluid defined by 

specific density threshold value (ρc) in first method.  Therefore a detailed analysis of density 

threshold value influence on entrainment is carried out in both density current systems. A series 

of experiment is conducted varying the density threshold from 2% to 20% where the 

overhanging nose propagated 9-10 lock length. A thorough and quantitative comparison of both 

approaches is presented for evaluating the entrainment parameter with varying bottom slope 

from 0
0
 to 10

0
.  

A wide range of density threshold value has been used in literatures for different experimental 

and numerical studies to evaluate the entrainment. Hacker et al. (1996) used six density threshold 

value ranges from 0.5 to 1.0 of initial density and 0.05 density threshold value is employed to 

define the boundary of the mixed and ambient fluid. Özgökmen et al. (2004) considered 0.2 

density threshold value to estimate entrainment in their numerical studies. For mixing in particle-

driven gravity currents, Necker et al. (2005) varied threshold from 0 to 0.12 and showed that 
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volume of mixed remained constant for 0.12 threshold value, but mixed fluid increases 

significantly for lower threshold value. Employing lock-exchange gravity currents with a high 

volume of release, Tokyay et al. (2011) assessed mixing by varying density threshold from 0.02 

to 0.2 and finally estimated the mixed volume using 0.02<ρc<0.98 limit. A constant density 

threshold value of 0.1 was used by Hogg et al. (2015) in experimental studies to evaluate 

entrainment in inclined gravity current filling basins. Recently, Sher and Woods (2015) used 4% 

of the initial concentration as threshold value to identify the height profile and consequently 

measured the mixed volume employing the height profile. 

In light of lack of consistency in threshold criteria, the density threshold value is varied to 

explore how threshold criteria to calculate entrainment parameter influenced the mixing in both 

lock-exchange and constant flux density current flows. 2D density contour plot at t/t0=10 

overlapped with 2, 5, 10% threshold line is visualized in Figure 4-4 for a horizontal lock-

exchange case with 0.33 lock-aspect ratio (h/l) and Re of 6000. The analysis revealed that for 

lock-exchange cases, 2% and 5% threshold interfaces included the backflow and over predicted 

the volume estimation (Figure 4-4).   However, the interface with 10% threshold captures all the 

mixed value with a better accuracy qualitatively.  

 

Figure 4-4. 2-D density contour overlapped by 2%, 5%, and 10% threshold interface 

Further analysis of threshold influence on entrainment is carried out considering two cases of 

lock-exchange and constant flux density current flows in horizontal bottom surface within 
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similar range of Ref =6000. The volume of mixed fluid (VM) is estimated using four threshold 

value of 0.02%, 0.05%, 0.1% and 0.2% applying both threshold and sorting approach. It reveals 

that the volume of the mixed fluid increases by a factor of 3-4 times of initial lock volume over 

the first 8-10 lock lengths estimated by both approaches which is consistent with the findings of 

Hallworth et al. (1996), Marino et al. (2005) and Sher and Diana (2015). Figure 5 and Figure 6 

shows the variations of VM (scaled with initial lock volume) plotted against lock number 

travelled by front for lock exchange and VM plotted against front locations for constant flux cases 

respectively. In lock-exchange case, the mixed volume shows less variance (5-15%) with 

different ρc up to 5or 6 lock length distances travelled by current front from lock gate which is 

considered as slumping phase. Whereas, a significant difference (up to 45%) in mixed volume 

beyond slumping phase is estimated by both approaches in the viscous phase. Nonetheless, 

entrainment parameter shows consistent and similar value with a variation of 1-5% for 0.02, 

0.05, 0.1 threshold, respectively, but a higher estimate (5-15%) for 0.2 threshold value is 

observed for both methods (Figure 4-5). Similar analysis with constant flux case reveals identical 

trend of mixed volume variation (up to 45% variation at later time) with density threshold values 

although the entrainment parameters consistently increases with lower density threshold 

employing both threshold and sorting approach (Figure 4-6). Considering the results above 

discussed, we use 0.1 density threshold value to evaluate the entrainment in future results and 

discussion. 
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Figure 4-5. Threshold effect on Lock-exchange case (a) VM /V0 (c) E vs lock number in threshold 

approach (b) VM /V0 (d) E vs lock number in sorting approach 

(a) (b) 

(c) (d) 
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Figure 4-6. Threshold effect on Constant Flux case (a) VM /V0 (c) E vs front location in threshold 

approach (b) VM /V0 (d) E vs front location in sorting approach 

Next, for lock exchange flows over slopes of 2.86
0
, 5

0
, and 10

0
 the volume of mixed fluid and 

entrainment are measured applying threshold and sorting approaches using 0.1 density threshold 

values. Applying threshold approach, Figure 4-8(a&c) reveals that the volume of mixed fluid 

remains similar up to 4 lock length for all the inclined cases and from 4 to 7 lock length 

distances, the VM increases with higher slopes consistently while for 10
0 

inclined case, some 

(a) 
(b) 

(c) (d) 
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drastic increase (up to 100%) in VM is seen beyond 7 lock length. This rapid increase of mixed 

volume for 10
0
 sloping case is observed due to the intense Kelvin-Helmholtz instabilities behind 

the head that provoke by higher slopes at later time (Figure 4-7). Therefore it appears for higher 

sloping cases that threshold approach overestimates the mixed volume significantly as the 

current travels beyond slumping phase which consequently overshoot (2 times) the entrainment 

parameter beyond 8 lock length. On the contrary, sorting approach predicts the mixed volume 

and entrainment without any spurious trend in both slumping and viscous phases for all the 

sloping cases which elucidate in Figure 8b-d. Although a variation in mixed fluid is observed 

beyond 6 lock-lengths in sorting approach, the entrainment parameter shows almost similar value 

for all the inclined cases.  

 

Figure 4-7. 2-D density contour overlapped by 10% threshold interface in 10
0
 inclined case 

Hence for higher sloping cases with intense instabilities, threshold approach demonstrated 

constraints to capture correct mixed fluid volume especially beyond the slumping phase. 

However, sorting approach provides a good estimation of mixed volume irrespective of slope 

magnitude and stage of density current where entrainment is evaluated. 
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Figure 4-8. Sloping effect on lock-exchange case (a) VM /V0 (c) E vs lock number in threshold 

approach (b) VM /V0 (d) E vs lock number in sorting approach 

4.3 Details of Mixing Efficiency Methodology  

Besides entrainment coefficient, mixing efficiency (ME) is another parameter that interprets the 

mixing in stratified flow like density currents, mostly used by ocean community, defined by the 

time dependence of volume averaged energy terms. Mixing efficiency (μ) is the fraction of the 

(d) (c) 

(a) (b) 



78 

 

total available potential energy released to the flow (which goes into turbulent kinetic energy) 

that leads to increase in potential energy through irreversible mixing above the initial 

background potential energy (Prastowo et.al 2008, Ilicak 2014). ME is given as: 

 
𝜇 =

𝑃𝐸𝑓 − 𝐵𝑃𝐸𝑖

𝐴𝑃𝐸
 (4.5) 

PEf is the potential energy at final time, BPEi is the initial background potential energy and APE 

is the available potential energy. APE is the difference of initial potential energy and initial 

background potential energy (potential energy if there is no mixing). 

 𝐴𝑃𝐸 = 𝑃𝐸𝑖 − 𝐵𝑃𝐸𝑖 (4.6) 

One can calculate the initial background potential energy by redistribution the density parcel (ρ
*
) 

with heaviest at the bottom and lighter parcels above and then estimating the potential energy for 

sorted density parcel throughout the domain using following equation: 

 
𝐵𝑃𝐸 = 𝑔 ∭ 𝜌∗ 𝑧𝑑𝑣 (4.7) 

Besides the above definition for mixing efficiency, some proposed a formula for “flux coefficient 

(Γ)” similar to ME, with the ratio of buoyancy flux to turbulent energy dissipation (Osborn 1980) 

and they got a constant value of 0.2 which has been used extensively for ocean circulation 

modeling. In this study, the method proposed by Prastowo et.al (2008) was adopted to evaluate 

the mixing efficiency in lock-exchange cases within the scope of our study and finally an 

analytical relation between entrainment parameter and mixing efficiency was presented at later 

section of this chapter. 

4.4 Relation of Entrainment (E) and Mixing Efficiency (ME) in Lock-Exchange: 

The entrainment coefficient and mixing efficiency were estimated at the end of domain where 

the dense fluid was initially filled with half of the domain separated by a barrier from ambient 
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fluid in canonical lock-exchange density current system.  The Entrainment formula employed in 

this section was discussed in equation 1 where V(t), the volume per unit span of original dense 

fluid and mixed fluid that occurred by entraining the ambient fluid  into the dense current and 

V0(t) is the volume per unit span of original dense fluid at that time could have evaluated using 

equation 4.3 and 4.4.  

However, using sorting approach, V(t) and Vo(t) can also be measured at the end of domain by 

estimating the height (H*) of dense fluid higher than the density threshold value (ρ> ρc) and 

height (H**) of the original dense fluid (ρ=1) which can be expressed as: 

 𝑉 = 𝐻∗𝐿       𝑎𝑛𝑑      𝑉𝑜 =  𝐻∗∗𝐿 (4.8) 

Now at the end of domain, the length scale would be L and the product of velocity and time scale 

would give L/2 and consequently by replacing the terms in equation (4.1) we can get the 

entrainment formula in terms of height and length as: 

 
𝐸 =

2(𝐻∗ − 𝐻∗∗)

 𝐿
 (4.9) 

  

 

 

 

 

Figure 4-9.(a) Lock-exchange system at initial stage, PEi=H (b) If there is no mixing, the 

redistribution of dense fluid throughout the domain BPEi=H/2, (c) Due to the mixing, H* is 

height of dense fluid greater than ρc and H** is height of dense fluid greater than original dense 

fluid (ρ=1). 
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As discussed before mixing efficiency (μ) could be expressed by equation 4.5 is the increase in 

potential energy through irreversible mixing above the initial background potential energy. In 

essence, all the potential energy can be expressed in terms of height of dense and mixed fluid. 

PEf is the potential energy at final time when the current front reaches the end of the domain 

which is equivalent to: 

 
𝑃𝐸𝑓 =

1

𝐿𝐻
∫ ∫  𝝆(𝒙, 𝒚)𝒚

𝐻

0

 𝑑𝑥𝑑𝑦
𝐿

0

 (4.10) 

Employing sorting approach, PEf can also be estimated from density averaged depth and 

expressed as: 

 
𝑃𝐸𝑓 =

1

2
(𝐻∗ +  𝐻∗∗) (4.11) 

BPEi is the initial background potential energy (potential energy if there is no mixing) can be 

expressed as H/2 and APE is the available potential energy which is the difference of initial 

potential energy (PEi=H) and initial background potential energy  

 
𝐴𝑃𝐸 = 𝐻 −

𝐻

2
=

𝐻

2
 (4.12) 

From the equations 4.5, 4.10 and 11mixing efficiency can be written as: 

 
𝜇 =

(𝐻∗ +   𝐻∗∗ − 𝐻) 

𝐻
 (4.13) 

Finally evaluating the equations 4.9 and 4.13the ratio of E and ME is expressed as, 

 𝐸

𝑀𝐸
=

2𝐻(𝐻∗ − 𝐻∗∗)

 𝐿(𝐻∗ +  𝐻∗∗ − 𝐻) 
 (4.14) 
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4.5 Results and Discussion 

4.5.1 Comparison of Results from 2-D & 3-D Simulations 

A lock-exchange case with similar domain configurations and flow parameters is evaluated 

employing both 2-D and 3-D simulations in terms of the flow properties and mixing quantitative 

and qualitatively for Ref = 6000.  We also compare the mixing behavior in lock-exchange and 

dense overflow density current cases based on reduced gravity distribution at dense current 

within similar range of Ref. Mixing dependency on Ref and Fr is also investigated using 2-D and 

3-D simulations results. 

4.5.1.1 Flow Properties & Mixing 

Froude’s number and front height are estimated from the 2-D and 3-D simulations in slumping 

phase and plotted against non-dimensional time in Figure 4-10. Interestingly results from 2-D 

simulations are in excellent match with that from 3-D simulation results in slumping phase 

although 2-D simulations has the limitation of not producing the pronounced three dimensional 

instabilities (lobe-cleft). Ooi et al. (2009) also reported similar findings in his lock-exchange 

numerical studies. However Ozgokmen et al. (2004) performed a numerical study on sloping 

bottom density current where they revealed that the propagation speed in 2-D simulations was 

approximately 20% slower than that of 3-D experiments might be appropriate for sloping 

conditions. Next, we compare the mixing qualitatively from density contours and based on 

entrainment rate estimation employing horizontal and sloping cases. 
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Figure 4-10. Front velocity and front height in 2-D and 3-D simulations 

The flow structures of fully developed density currents for horizontal cases in 2-D and 3-D 

simulations are illustrated as density contour plots in Figure 10 at t/t0=14. The span-wise 

averaged density contour from 3-D simulations is compared with instantaneous density contours 

of 2-D simulations. It is clearly observed the presence of coherence K-H billows and their 

breakdown to small scales behind the head at body region for 2-D simulations while the K-H 

billows only generated near the head and completely decays in body for 3-D simulations. Strong 

and energetic structures along shear interface reflecting higher mixing in 2-D simulations are 

observed due to the fact that spreading of current flow in span direction is not allowed in 2-D 

simulations. The influence of lobe-cleft instabilities at leading edge towards mixing leads to 

slightly more dilution in current head for 3-D simulations. However the entrainment of ambient 

fluid into dense current is more dominant in 2-D simulation compare to those of 3-D simulations. 
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This can be confirmed by evaluating Figure 11 where the instantaneous reduce gravity (𝑔′) are 

scaled by initial reduced gravity (𝑔0
′ ) at current head and overall dense current plotted against 

non-dimensional time for both simulation cases. The reduced gravity value is a good indicator of 

mixing within the dense current. The average non-dimensional reduced gravity (𝑔′̅ =
𝑔′

𝑔0
′ ) at 

current head in 2-D simulations is found to be 0.9 compare to 0.85 for 3-D simulation indicates 

slight higher mixing in 3-D simulations due to three dimensional instabilities at leading edge. 

However, the lower value of 𝑔′̅ in overall dense current in 2-D simulations interprets higher 

mixing compare to 3-D simulations, which consistent with the observation from the visualization 

of density contour plots. To have comprehensive understanding about the mixing, we quantify 

the entrainment parameter (E) for both cases employing interface identification and sorting 

approaches. It reveals that entrainment parameter in 2-D simulation is approximately 50% higher 

than that of 3-D simulations. 

 

Figure 4-11. 2-D density contours overlaying by 0.1 density threshold (white dotted line) and 

original density fluid (black solid line) interface in (top) 2-D Simulations; (bottom) 3-D 

simulations for horizontal case (bottom slope=0
0
 ) 
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Figure 4-12. Reduced gravity scaled by initial reduced gravity at head and overall dense current 

in 2-D and 3-D simulations for bottom slope=0
0
 case 

Next, we investigate the flow structures and mixing for a sloping case of 10
0
 by conducting 2-D 

and 3-D simulations of dense currents in accelerating phase. From the visual inspection of Figure 

4-13, we observe more energetic K-H rolls in 2-D simulation compared to 3-D simulations. 

Nayamatullah and Bhaganagar (2016) also conducted a 2-D numerical study and showed that as 

bottom slope increases, the current tail and body has vigorous activities where the instabilities 

are stretched in both horizontally and vertically. Nonetheless, the current head becomes more 

diluted due to the mixing similar to previous horizontal cases. Reduced gravity at current head 

and dense current are shown in Figure 4-14. The difference in reduced gravity (𝑔′̅) between 2-D 

and 3-D simulation are more significant as slope enhances mixing in 2-D more than 3-D 

currents. The entrainment rate (E) in 2-D simulation is now up-to 2 times higher than that of 3-D 



85 

 

simulation measured by both interface identification and sorting approaches. Significant 

differences exist in the head of 2-D and 3-D current. Head of 2-D current undergoes mixing 

quickly and remains undiluted throughout the accelerating phase. Whereas, head of 3-D current 

undergoes mixing and dilution through the end of the accelerating phase. 

 

 

Figure 4-13. 2-D density contours overlaying by 0.1 density threshold (white dotted line) and 

original density fluid (black solid line) interface (top) 2-D Simulations; (bottom) 3-D simulations 

for bottom slope=10
0
 case 
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Figure 4-14. Reduced gravity scaled by initial reduced gravity against non-dimensional time at 

head and overall dense current in 2-D and 3-D simulations for bottom slope=10
0
 case 

 

4.5.1.2 Mixing in Lock-Exchange Vs Dense Overflow case 

We investigate the differences in mixing behavior between 2-D lock-exchange and dense 

overflows. For this purpose, we keep the Reynolds number the same of Ref = 6000. In this 

section, we investigate the lock-exchange and dense overflow density currents. Differences in 

mixing exist at head of the current between these two as shown in Figure 4-15. Mixing occurs at 

the head of the current for overflow currents resulting in significant dilution at the head.  
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Figure 4-15. Reduced gravity scaled by initial reduced gravity against non-dimensional time at 

head and overall dense current in lock-exchange and dense overflow cases 

 

4.5.1.3 Entrainment Dependence on Non-dimensional Parameter 

Figure 4-16a shows the entrainment parameter plotted for a wide range of Ref (1500<Re<32000) 

for both 2-D and 3-D lock-exchange and dense overflow cases where Fr remains within 

subcritical conditions (Fr=0.5≈0.65). E for 2-D currents is higher than that of 3-D currents. 

Entrainment results from our 2-D/3-D LES simulations show a good agreement with Cenedese 

and Adduce (2008) laboratory experimental entrainment results..  Strong correlation of E exists 

with Re. Further, the rate of increment of E at Ref <10
4
 is higher than that of at Ref >10

4
. 

Cenedese and Adduce (2008) conducted a series of dense overflow experiments flowing down a 

slope in a rotating fluid and showed entrainment parameter (E) dependency on both Ref and Fr 

spanning a wide range of 0.8 < Fr < 10, and 10 < Ref < 1400. Towards this direction, we explore 
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E dependence on both Ref and Fr, E is plotted versus the product of Ref and Fr (ReFr) which also 

shows a strong relation in both 2-D and 3-D simulations for lock-exchange and dense overflow 

cases (Figure 15a) 

 

Figure 4-16. (a) Entrainment parameter versus Reynolds number (ReFr) 

4.5.1.4 Mixing Efficiency 

Figure 4-16b shows the mixing efficiency values plotted versus Reynolds numbers,  and it in the 

range of 0.14±0.01 which is approximately 25% higher than the Prastowo et al. (2008) and 20% 

higher than the Illiack (2014) numerical results. These fluctuations might be originated due to the 

two-dimensional nature of the solution. However, our results are smaller than the ongoing 

debatable and extensively used value of 0.2 as mixing efficiency by oceanography community to 

compute mixing and energy budget in the ocean. To examine the correlation between the 

entrainment and mixing efficiency parameters, both entrainment rate and mixing efficiency are 

presented in one plot against Ref in Figure 4-17. 
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Figure 4-16.(a) Entrainment parameter versus Reynolds number (Ref), (b) Mixing Efficiency 

versus Reynolds number (Ref) 

 

Figure 4-17.Mixing Efficiency and Entrainment parameter versus Reynolds number (Ref) 
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4.6 Conclusions 

Mixing is a profoundly robust and dynamic process, which occurs in most of the buoyancy 

driven stratified flows (i.e., gravity current or dense overflows) and hence alters the final 

properties of fluid and influences the hydrodynamics of dense currents propagating downstream. 

Hence accurate and computationally efficient method for estimating mixing has enormous 

significance in both coastal and oceanic circulation. We develop a robust LES tools to simulate 

2-D and 3-D lock-exchange and dense overflow cases with smooth sloping bottom. Besides the 

flow properties, the mixing in dense currents based on entrainment rate and mixing efficiency are 

compared in 2-D/3-D simulations for an extreme range of Ref (1500< Ref <32000) cases having 

subcritical flow conditions (Fr=0.5≈0.65).We quantify the E and μ for series of experimental 

cases varying the bottom slope from 0
0
 to 10

0
. 2-D simulations predict the flow properties quite 

precisely having similar results as 3-D simulations over slumping phase of current evolution in 

lock-exchange cases. Nonetheless, the entrainment rate (E) values from our 2-D experimental 

cases are up-to 2 times higher than those of 3-D simulations which ranges from 0.02<E<0.1.  We 

observe a strong E dependency on Re within the wide span of Ref cases for both 2-D and 3-D 

simulations. We use volume increment method to estimate the entrainment rate where two robust 

methods (interface identifying and sorting) are employed for evaluating the mixed fluid in 

density current. To quantify the entrainment, 0.1 density threshold value is used for both 

interface identifying and sorting methods. The mixing efficiency results from 3-D simulations 

are in the range of 0.11±0.02 which is an excellent match with previous numerical and 

experimental studies while we observe 0.14±0.01 from 2-D simulation in lock-exchange cases 

which is approximately 25% higher than the Prastowo et al. (2008) and 20% higher than the 

Illiack (2014) numerical results. However both results from 2-D and 3-D simulations are smaller 
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than the extensively used value of 0.2 by oceanography community to compute mixing in the 

ocean. Our 3-D simulation mixing results are found to be consistent with previous numerical and 

experimental results; however, the overshoot of 2-D in E and μ originates due to the two-

dimensional nature of the solution which does not allow developing three dimensional structures 

in leading edge. Employing sorting method, an empirical relation of entrainment parameter and 

mixing efficiency is proposed based on height of the redistributed fluids. Both E and μ results are 

plotted against Ref and showed a strong relationship of E and μ with Ref. Comparing the mixing 

behavior in lock-exchange and dense over flow density current systems, it reveals a contrast 

mixing pattern where the reduced gravity has a maximum at the current head and smoothly 

decreases upstream from the leading edge for lock-exchange and vise versa for dense overflow 

cases.  
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CHAPTER FIVE: FLOW METRICS AND ENTRAINMENT ANALYSIS IN 3D LES 

SIMULATIONS 

5.1 Introduction 

In the ocean, dense waters are generated in several regions, usually located at high latitudes, 

where either strong atmospheric cooling and/or ice formation with consequent brine rejection, 

contribute to increasing the water density. These waters may flow over a sill or through a 

constriction to form dense currents descending the continental slope, hence the name overflows. 

Examples of locations of such overflows are the Denmark Strait (Dickson and Brown 1994; 

Girton and Sanford 2003; Käse et al. 2003), the Faroe Bank Channel (Saunders 1990; Mauritzen 

et al. 2005), the Baltic Sea (Arneborg et al. 2007), and various locations along the Arctic 

(Aagaard et al. 1981) and Antarctic (Muench et al. 2009; Padman et al. 2009; Foster and 

Carmack 1976) continental shelves. Marginal seas where evaporation induces an increase in 

density, are other regions of dense water formation; for example, the Mediterranean (Baringer 

and Price 1997; Price et al. 1993), the Red Sea (Peters and Johns 2005; Peters et al. 2005), and 

the Persian Sea. 

Dense currents descend the continental slope for long distances before encountering the ocean 

bottom or interleaving at their level of neutral buoyancy. At the sill/constriction and during the 

descent, dense currents have been observed to entrain the surrounding ambient fluid. The final 

properties of their water masses are dictated by the amount and properties of the entrained fluid. 

Vertical profiles through the dense current have shown that the top of the current is a region with 

usually large velocity shear and low Richardson number which presents large turbulent 

displacements indicative of entrainment due to shear-driven mixing (Figure 2d and 2f of Peters 

and Johns, 2005). Recent studies (e.g. Cenedese and Adduce, 2010) focused primarily on the 
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entrainment occurring in the shear region at the top of the dense current. In thick currents, where 

the height is much larger than the bottom boundary layer thickness, mixing occurring in the 

bottom low Richardson number region contributes to the homogenization of the densest water 

mass, while most of the entrainment is confined to the top of the current. However, in thin dense 

currents, where the height is comparable to the bottom boundary layer thickness, bottom friction 

influences entrainment which is due to a combination of shear-driven turbulence at the top of the 

current and turbulent eddies generated by the bottom roughness. Thin dense currents can result 

from branching of larger overflows into canyons or around ridges (Sherwin and Turrel, 2005), 

and can be found in marginal basins like the Baltics (Umlauf and Arneborg, 2009a, b), but also 

in lakes (Dallimore et al., 2001) and in reservoirs (Hebbert et al. 1979; Fernandez and Imberger, 

2006). The findings of the proposed work may also apply to estuarine dynamics in which the 

denser water from the open ocean enters the estuary, and the entrainment and mixing between 

the ocean denser water and the river lighter water may be influenced by bottom roughness. 

5.2 Flow Properties in Lock-Exchange Case 

Based on the source configuration, two types of density current systems are available in natural 

environment which are investigated by researchers in literatures: constant volume (lock-

exchange) and constant flux (dense overflow). A full depth release of lock-exchange density 

current allowed propagating upto 12 lock lengths to evaluate the current height profiles and front 

velocity in slumping, inertial and viscous phases with a Re of 6000. 

5.2.1 Front Location and Velocity 

The location of the current front is identified by locating the overhanging nose position at 

streamwise direction in different time instances. The non-dimensional distance travelled by the 
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current front (𝑥𝐹̅̅ ̅ =
𝑥𝐹

𝐿𝑂
) is showed as a function of nondimensional time in Figure 5-1a. The 

dashed straight-line corresponds to a slope of constant increment of front location at each time 

step. After releasing the lock, we observed a uniform increment of front location upto t/t0≈10 

which correspond to 5 lock length advancement of current front towards downstream beyond 

original lock position. With constant nondimensional front velocity(𝑈𝐹
̅̅̅̅ =

𝑈𝐹

𝑈𝑏
), this stage is 

considered as slumping phase that can also be seen in front velocity versus time plot (Figure 

5-1a). These observations are in good agreement with Rottman and Simpson (1983), Cantero et 

al. (2007) experimental and DNS results. Before the slumping phase is realized, a brief 

acceleration phase is observed where the front velocity rapidly surges from zero to reach a 

maximum value at 𝑥𝐹̅̅ ̅≈1 or t/t0≈2.5 and falls slightly before merging to a constant velocity 

(Figure 5-1a,b). This observation in acceleration phase was also revealed in few previous 

experimental (Martin and Moyce, 1952a,b) and numerical (Härtel et al. 1999 and Cantero et al. 

2007) studies. As the dense current advances beyond slumping phase (𝑥𝐹̅̅ ̅>6 or t/t0>10), the 

current front tends to slow down to transit into inertial phase until traveling 7 lock length which 

correspond to 𝑥𝐹̅̅ ̅≈8 (t/t0≈14). We observed an excellent match of inertial phase scaling by 

Huppert and Simpson (1980) theoretical model with a proposed decay rate of approximately 

(t/t0)
-1/3

 (Figure 5-1b). Immediately after inertial phase, the front velocity decrease more rapidly 

to fall into viscous phase where the front velocity follows the decaying law proposed by Huppert 

and Simpson (1980) with a great match in slope as the value of (t/t0)
-4/5

  (Figure 5-1,b). 

Similar to few experimental studies (Rottman and Simpson, 1983, Bonnecaze et al., 1993), we 

also observe that after releasing the lock, the backflowing currents meets and reflects at the 

endwall to create an internal bore propagating away to advance towards the front nose with a 

maximum speed of 1.5±0.05 time of front velocity and eventually overtakes the front of the flow 
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in the region of 6≤ 𝑥𝐹̅̅ ̅ ≤8, sometime called ‘slumping point’ (Figure 5-2a). The observation of 

bore velocity is comparable with the experimental data of Berson (1958), Kneller et al. (1999), 

and Sher and Woods (2015). During this period the current front travels with a constant speed 

and approximately with a uniform depth while original dense fluid dominates in the current head. 

After the bore catches the nose of the flow, the current head started to slow down and eventually 

transit into the inertial and viscous phase.  
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Figure 5-1. (a) Front Location (b) Front Velocity in Lock-Exchange Case 

(a) 

(b) 
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Figure 5-2. Contour of streamwise velocity (U) scaled by front velocity in (a) Slumping Phase 

(b) Inertial and viscous phase 

5.2.2 Current Height 

In this study, the height of the current is defined by interface identification approach 

(Nayamatullah et al.2016) employing 10% density threshold value. In that method, the current 

height profile was evaluated by tagging the density field where it equals to density threshold 

value (ρc )in vertical column at each stream-wise location using a MATLAB script. Density 

threshold is the lowest density fluid that is originated due to the mixing in shear interface at the 

top of the dense current as stated in equation 1 

 
𝜌(𝑥, 𝑦, 𝑡) = {

0 𝑤ℎ𝑒𝑛 𝜌(𝑥, 𝑦, 𝑡) < 𝜌𝑐

1 𝑤ℎ𝑒𝑛 𝜌(𝑥, 𝑦, 𝑡) > 𝜌𝑐
 (1) 

 

However, in literatures, we found several methods to estimate the current height profile in 

density currents. We have adopted Shin et al. (2004) and Marino et al. (2005) approaches to 

(b) 

(a) 
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estimate the height of current interface which provides some interesting insights while 

comparing with first method mentioned above. They estimated an equivalent height (ℎ̅) at each x 

location by integrating vertically the Spanwise averaged density using following equation: 

 
ℎ(𝑥, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ = ∫

𝜌(𝑥, 𝑧, 𝑡) − 𝜌1

𝜌2 − 𝜌1

𝐻

0

𝑑𝑧 (2) 

Current height profile measured from both method are shown in Figure 5-3a,b for both slumping 

and inertial and viscous phase. In both approach, the nondimensional height of the current is 

maximum at current head remains constant with different value in respective methods at 

slumping phase, but start to decrease downstream of slumping point. In slumping phase, the 

nondimensional front height of current remains constant within 0.5±0.05 and 0.4±0.02 for 

threshold and Shin et al. (2004) approach respectively. The results derived from Shin method is 

an excellent match with experimental studies of Marion et al. (2005) and Sher and Woods 

(2015). Nonetheless, threshold approach represents the mixed fluid with better accuracy while 

Shin approach provides the current interface by averaging the density field over span and vertical 

direction which is not true representation of mixed fluid within the dense current but applied to 

determine the local Froude number. This observation is further substantiated when the mixed 

fluid volume estimated by Shin approach remains almost constant over the whole period of 

current advancement which is not valid observation for mixing in density current. Since we 

extend our analysis on quantifying the mixing in different stages of density current, threshold 

approach seems to be appropriate to identify the density interface for measuring the mixed fluid 

volume in entrainment analysis. In inertial and viscous phase, the current head height reduces 

more sharply in Shin method comparing to threshold approach as current advances downstream 

having two time higher current height in later method. The spatial and temporal average of 

current interface is also measured employing both approaches which shows smaller margin of 
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anomalies in results. The mean height of the current in slumping phase is approximately 0.38H 

and 0.36H for threshold and Shin et al. (2004) approach respectively. As the current travels 

almost 11 lock length beyond the lock gate, the mean depth of the current head in inertial and 

viscous phase reduced to approximately 0.25H and 0.2H for threshold and Shin et al. (2004) 

approach respectively (Figure 5-3). 

 

Figure 5-3. Current height profile in slumping and inertial and viscous phase (a) Threshold 

Approach, (b) Shin et al. (2004) Approach 

(a) 

(b) 
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5.2.3 Buoyancy at Current Head 

The nondimensional mean density at head(𝜌ℎ𝑒𝑎𝑑
′̅̅ ̅̅ ̅̅ ̅) , front height (ℎ𝐹

̅̅ ̅)and buoyancy at head 

(𝐵ℎ𝑒𝑎𝑑
̅̅ ̅̅ ̅̅ ̅ = 𝑔ℎ𝑒𝑎𝑑

′̅̅ ̅̅ ̅̅ ̅ ∗ ℎ𝐹
̅̅ ̅) are estimated by scaling original dense fluid density, channel height (H), 

and initial buoyancy respectively. To identify the current head, we assumed the length and height 

of head as one lock height (H) upstream of nose and current front height respectively. In figure 2, 

these terms are plotted against nondimensional time for all the phases. After initial acceleration 

phase (t/t0> 4), all the terms reach into a quasi-constant state in slumping phase. The mean 

density at head reduces to 0.65 at the end of slumping phase and drastically diminishes at inertial 

and slumping phase to reach around 0.4. As the buoyancy at head remains uniform, the front 

spreads downstream with a uniform velocity in slumping phase and a sharp decline in buoyancy 

at head is observed in inertial and viscous phase. The constant value of front height ℎ𝐹
̅̅ ̅ ≈0.45 in 

slumping phase is an excellent match with previous experimental (Marino et al. 2005) and 

numerical studies (Cantero et al. 2007). 
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Figure 5-4. Nondimensional reduced gravity, buoyancy at head, and front height versus time for 

lock-exchange case 

5.3 Accelerating and Slumping Phase in Lock-Exchange Case: 

5.3.1 Two-Dimensional Flow Structures  

To understand the mixing behavior comprehensively in lock-exchange density current, the time 

evolution of flow structures (i.e., instabilities, vorticity, velocity) in accelerating and slumping 

phase are illustrated in Figure 5-5. Many numerical and experimental studies demonstrated that 

Kelvin-Helmholtz (K-H) like interfacial vortices is most common instabilities in the interface of 

buoyancy driven density current systems that are portrayed by a series of rolled vortices. 

Simpson (1972, 1984) has manifested the K-H instabilities as the primary mixing mechanisms 

that initiated by the velocity and density gradients at the intruding head and ambient fluid 
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interface. K-H instabilities are predominantly analyzed and illustrated on lock-exchange type 

gravity currents studies numerically and experimentally in literatures (Hartel 2000, Cantero et al. 

2006, 2007, Ooi 2006). Spanwise averaged 2D density contour in x-y plane are shown in Figure 

5-5a,b. During the initial acceleration phase (𝑥𝐹̅̅ ̅≈1), the roll-up type vortices start to develop in 

the interfaces behind the current head and several smooth K-H billows are distributed throughout 

the shear interface reaching the saturation amplitude while current front remain within the half 

height of the lock with original dense fluid. The laminar type rolled up vortices structures can 

also be clearly seen in vortices (ωz) contour plots in x-y plane (Figure 5-5c) during this 

acceleration phase. Afterwards, the transition to slumping phase (1≤ 𝑥𝐹̅̅ ̅ ≤6) is appeared with 

fully developed head, body and tail structures in the current. In the course of slumping phase, the 

reflected backflowing currents (sometime called ‘bore’) propagating away from the endwall 

generates disturbances in the interface of body region and current head travels with original 

dense fluid maintaining approximately half height of the lock (Figure 5-5b) which also discussed 

in previous section. From visual inspection of the contour plots of vortices in Figure 5-5d, it 

reveals a strong vortex shedding in the interface of dense current which start to generate just 

behind the current head and continues to grow upstream of the current nose while stretch in both 

horizontal and vertical directions to break down into smaller laminar type rolls up or eddies 

which are the primary mechanism of entrainment in gravity currents.  

In the present 3D LES simulations, the instantaneous streamwise velocity (Ux) and vertical 

velocity (Uy) contours at 0.5𝑧̅ are presented as the current developed in time and transit into 

slumping phase (Figure 5-5e). A distinct interface with zero streamwise velocity were observed 

while current advanced with a constant speed to downstream and ambient fluid were advected 

with the overlying counter flow. From colormap of Figure 5-5e, it reveals that the maximum 
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streamwise velocity persists inside the current which is in accordance with the bore velocity 

discussed in previous section of this paper. 

The vertical velocity structures contributes more insight for better understanding of the mixing in 

stratified flow condition as ambient fluid entrains vertically into the current through the interface, 

sometime calls “entrainment velocity”. The negative vertical velocity (blue color in Figure 5-5f) 

represents the entrainment velocity which is the primary instrument of mixing in the interface. 

From the snapshot of vertical velocity contour in slumping phase, it reveals that dense current 

travels with positive vertical velocity at nose while negative vertical velocity observed behind 

the current head as well as throughout the length of current for lock-exchange case. A strong 

negative vertical velocity structures were observed just after tail collapsed near the inlet wall in 

lock-exchange case due to the reflected backflowing currents which enhanced intense local 

mixing can also be seen in density contours.  

(b) 

(c) 
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Figure 5-5. 2D Structures in Slumping Phase of Lock-Exchange Case at t/t0=2, t/t0=7 

 

5.3.2 Three-Dimensional Flow Structures  

To understand the evolution of density current and the dynamics of coherent structures that 

implicates the mixing, we visualize and analyze the three dimensional density contours and wall 

normal vorticity structures at different time instances of acceleration and slumping phase in this 

section (Figure 5-6). Three-dimensional instabilities (lobe-cleft) start to develop at current nose 

region as soon as current head is fully formed at the end of acceleration phase. In the shear 

interface, two-dimensional instabilities (K-H billows) are observed in well circular shape without 

breaking coherence, but start to distort in span (Figure 5-6a). At this point, symmetry of the flow 

is unaffected by three dimensionality of the current. A thin layer of mixed fluid (ρ≈0.5) can be 

seen over the span and streamwise direction in the shear interface. The lobe-clefts are densely 

populated along span with very small width.  

(d) 

(e) 

(f) 
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As the current spreads with time, the lobes at nose are getting bigger in width by merging with 

neighbor lobes with more energy in slumping phase. At the same time few lobes breakdown to 

form cleft at advancing current head. Simpson (1972) showed that these lobe-cleft structures at 

current head emerge due to the convective instability by overrunning the denser fluid into the 

ambient fluid. The growth and development of lobe and cleft instability are substantiated by the 

presence of no-slip surfaces (Simpson 1972, Härtel et al. 2000a). Figure 5-6c shows that the local 

front velocity in spanwise direction is not constant due to the development of individual lobes 

and clefts. Maximum lobes width is observed as 0.25H which is consistent with the Simpson’s 

(1972) proposed correlation at that local Re in slumping phase (Figure 5-6c). The structures and 

development of lobe and clefts in time has been analyzed in several laboratory experiments, for 

example Simpson 1972, Garcia and Parker, 1989, Chowdhury et al.2009. Behind the head, the 

2D K-H vortices lose the coherence and breakdown into asymmetric small instabilities. We 

observe three dimensional structures in the body region which are complex and intense in nature 

and interact with the 2D K-H instabilities to breakdown into small scale. The overrunning 

ambient fluid into the lobe and clefts at nose also play a key role to generate those 3D structures 

in the wake of current flow. These 3D disturbances distributed along span eventually stretched, 

distorted, and broken down in the current body enhance the entrainment of ambient fluid into 

dense current (Figure 5-6b.d). After the lock slumps at tail, The reflected backflow (sometime 

calls ‘bore’) moving away from the endwall generates 3D instabilities which elevates the height 

at tail region and intensify the mixing that can be visualize in Figure 5-6b. As the current 

advances with time in slumping phase, these turbulent three dimensional structures are localized 

in body of the current behind the leading head, eventually dissipates towards the tail of the 

current. Several laboratory experiments have been reported and analyzed those three dimensional 
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structures in current body, for example Simpson and Britter 1979, Simpson 1979, Garcȋa and 

Parker 1989. 

To represent accurate flow physics and complex flow structures that implicate the mixing 

process of two miscible fluid in density current, investigation of vorticity structure would be 

more apparent at different time instances. Figure 5-7 shows isosurface of the instantaneous wall-

normal vorticity (ωy) structures at early of stage of flow, in acceleration phase (t/t0=2). The 

coherent K-H rolls-up are distributed in span almost symmetrically. Although lobe-clefts 

structures can be seen in leading front, the appearance of 3D structures does not quite emerge 

behind the current head at this point. Transition into slumping phase (t/t0=7), the isosurface of 

wall-normal vorticity (ωy) structures is illustrated in Figure 5-8a,b,c as front, top and perspective 

view respectively. The front view shows the interactions of two-dimensional structures with 

three dimensional structures at current head and in the wake of current flow, the top view allows 

the visualization of development of three-dimensional structures and perspective view portray 

the three dimensionality of all the profound structures in the dense current. Wall-normal vorticity 

provides the swirling strength of the flow which represents the regions of intense instabilities and 

its development on the wake of the flow. In Figure 5-8, the isosurface of 0.5≤ ωy≤3.0 is 

visualized with the dominant value of ωy≈1 which captures the strong vortical regions where 

mixing is more apparent. In the front view (Figure 5-8a), the formation of few K-H billows are 

clearly observed just behind the current head, but complex and intense vortical structures can be 

seen far upstream of leading front and in tail region. Near the wall we observe intense vortical 

structures due to the no-slip boundary condition which affects the flow evolution. However, 

these vorticity structures reside inside the dense current has minimal implication on entraining 

the ambient fluid into dense current. Therefore, further investigation on near wall structures is 
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not carried within the scope of study. The vortical structures near head remain within the half 

height of the channel and elevated height at tail is observed due to the interactions of intense 

vortical structures. Some interesting features are observed in top view of the vertical vorticity 

isosurface. In the interface and near the wall, we observe vorticity streaks behind the head which 

elongates upto x/H≈6 upstream of current nose. These wall-normal vorticity streaks are 

originated in fact associated with the steep vertical velocity gradient in the interface and near 

wall. Lobe-cleft structures are also realized in between the vorticity streaks along span in leading 

front. A small scale, complex non-coherent vortical structures are observed in the tail region 

implicates intense mixing. All of the above features also appear in the perspective view of wall-

normal vorticity isosurface plot. The coherent vorticity structures are observed near current head 

clearly showing the formation lobe-clefts instabilities, roll up vertical vorticity are distributed 

quasi-symmetrically along span direction at this region. The coherence of vorticity structures 

disappears and become complex and intense in the body and tail region where we observe few 

hairpin vortices. 
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Figure 5-6. 3D density contour in acceleration and slumping phase for lock-exchange case at 

different time instances, (a) t/t0=2, (b) t/t0=4.5, and (c) t/t0=7 

 

We also look into the streamwise vorticity (ωX) structures, sometime calls ‘secondary vorticity’, 

plays a key role in generation and transport of turbulent energy, the development and formation 

(a) 

(b) 

(c) 
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of turbulence in the wake of the current flow. In Figure 5-9, the isosurfaces of instantaneous 

streamwise vorticity in the range of 1≤ωX≤3 are presented in front and perspective view. In the 

front view of isosurface (Figure 5-9a), we can see the counter-clockwise roll up vortices 

structures behind the head clearly and a turbulent wake of streamwise vorticity can be observed 

in tail and body of current. Near the wall, a layer of complex structures is observed due to the 

strong streamwise velocity gradient for no-slip boundary. In perspective view, elongated tooth 

type vorticity structures are seen in leading front which are the basis of formation of lobe-cleft 

three dimensional structures (Espath et al. 2015). Upstream of the current head, mixed of large 

and small complex vortical structures are seen similar to wall-normal vorticity. 

 

 

Figure 5-7. Wall normal vorticity (ωy) in acceleration phase at t/t0=2 
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Figure 5-8. Wall normal vorticity (ωy) in slumping phase at t/t0=7 (a) front view, (b) top view, (c) 

perspective view 

 

(a) 

(b) 

(c) 
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Figure 5-9. Streamwise vorticity (ωx) in slumping phase at t/t0 =7 (a) front view, (b) perspective 

view 

 

5.3.3 Energetics in Slumping Phase 

After investigating the two and three dimensional structures in current flow, we focus on the 

energetics in lock-exchange density current system in slumping phase. The energetics of the 

currents is best described by analysis of the turbulence kinetic energy (TKE) equation. 

Turbulence production is contribution from buoyancy (
y

v






 ' ) and shear-driven production (-

)''
y

U
vu



. In the turbulence mixing process, energy is extracted from the mean flow through the 

buoyancy flux ( 'v ) and shear-stress ( ''vu ) and transferred to turbulence mixing. Mean shear (

)
y

U




 is the primary source of turbulence at the interface causes the ambient fluid to entrain into 

(a) 

(b) 
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the dense current and dilute it. Analysis is performed on mean shear, TKE production and 

participation of production between the buoyancy and shear- production. Finally, we discuss the 

relation of TKE and TKE production to mixing in the current. 

 

Figure 5-10. Energetics in slumping phase in reference frame overlaid by density contour (black 

dotted line) (a) mean shear, (b) Reynold Stress, (c) Buoyancy Flux 

 

Figure 5-10 and Figure 5-11 and  show the contours of energetic terms overlaying with density 

contour (dotted black lines) in a system of reference frame moving with front velocity, sometime 

calls “Lagrangian reference frame”, nose position is at x/H=0. The contours of mean shear ( )
y

U




 

shows negative shear in the interface which contributes the TKE production, started from the 

(a) 

(b) 

(c) 
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current nose and stretch upstream of head upto x/H≈6. The density contours well-captures the 

shear interface. A positive mean shear damps the TKE production, occurs near the wall due to 

steep streamwise velocity gradient for no-slip boundary condition (Figure 5-10a). Reynolds or 

shear stress ( ''vu ) and buoyancy flux ( 'v ) are visualized in Figure 5-10b, c which extract 

energy from mean flow and transfer to turbulence. We observe high shear stress and buoyancy 

flux near current nose and behind the head along shear interface stretched upto x/H≈6.0 as the 

interaction of two-dimensional structures and their breakdown into small scales instabilities in 

the wake of flow which also indicates the region where turbulence mixing occurs predominantly. 

In both cases, the density interfaces realizes the high transfer zone of energy comprehensively. 

As seen from the mean shear and the shear stress contours, the instabilities behind the current 

head are the primary sources of TKE production, subsequently goes into turbulence mixing 

(Figure 5-11a). Strong TKE production from shear (- )''
y

U
vu



is observed just behind the current 

head and gradually diminish away from the current head further upstream. TKE production from 

buoyancy (
y

v






 ' ) contours is qualitatively similar to the TKE shear production. However, due 

to the transport of energy by shear stress and buoyancy flux, we observe strong mixing far 

upstream of current head as observed in two-dimensional and three-dimensional density contour 

and vorticity plots. Interestingly, it reveals that maximum TKE occurs near the wall at y/H≈0.15, 

although the dominant TKE production from shear and buoyancy are observed in the density 

interface (Figure 5-11c). Kneller et el. (1999) also reported in his laboratory experiment that the 

maximum TKE occurs at y/H≈0.1 which is in good accordance with our results. Strong TKE can 

be observed behind the nose and extended upto x/H≈7 upstream of the current head.  
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Figure 5-11. Energetics in slumping phase in reference frame overlaid by density contour (black 

dotted line) (a) TKE production from shear, (b) TKE production from buoyancy, (c) TKE 

 

5.4 Inertial and Viscous Phase in Lock-Exchange Case 

5.4.1 Two-Dimensional Flow Structures  

As the time evolution of flow structures continues, the dominant force balance between the 

inertial term and buoyancy term (arises from the density differences) shifted towards inertial 

term as a result of decaying density difference at current head and transit into the inertial phase.  

Soon after inertial phase, a strong influence of the viscous term is observed to mark this stage as 

viscous phase and eventually the current flow dissipates due to the substantial dominance of 

(a) 

(b) 

(c) 



115 

 

viscous term over buoyancy forces. Figure 5-12 shows few characteristics in inertial and viscous 

phase that would demarcate this stage from slumping phase. Spanwise averaged 2D density 

contour reveals a strong dilution in current head that occurs during inertial and viscous phase can 

be seen in Figure 5-12a. The maximum density in current can be seen inside the current and 

density at head reduces from 0.95 at slumping phase to 0.6 in inertial phase and continues to 

decay in viscous phase until the flow dissipates. Due to the strong dilution in head, the front 

height and velocity of the current reduces significantly which is also showed in previous section. 

These observations are also presented in few experimental and numerical studies previously, 

such as Marino et al. (2005) and Cantero et al. (2008). Similar to slumping phase, the instability 

induced mixing at shear interface behind the current head is observed, but with lower amplitude 

and strength unlikely in slumping phase. A long thin tail is observed with inconsiderable mixed 

fluid due to the absence of interaction between heavy and light fluids at this stage of flow 

evolution. Figure 5-12b reveals that the vortex shedding continues to maintain structures similar 

to slumping phase but with significantly lower strength. Less energetic and laminar type 

spanwise vortices (ωZ) are 5 times lower in magnitude compare to slumping phase substantiate 

less mixing in inertial and viscous phase.  

The instantaneous streamwise velocity (Ux) and vertical velocity (Uy) contours at 0.5𝑧̅ are 

presented in Figure 5-5c,d in inertial and viscous phase. Dense current advanced with a decaying 

speed to downstream and ambient fluid are advected with the overlying counter flow. The front 

height can also be seen as significantly lower than slumping phase. The local Reynolds number 

(𝑅𝑒𝐹 =
𝑈𝐹ℎ𝐹

𝜗
) would be significantly small owing to lower front height and front velocity at this 

stage of flow compare to slumpin phase. No motion is observed in tail part of the current. From 

colormap of Figure 5-12c, it reveals that current front travels with the maximum streamwise 
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velocity unlike slumping phase. Strong negative vertical velocity structures are observed in few 

lock behind the head is comparable to slumping phase. 

 

Figure 5-12. 2D Structures in Inertial and Viscous Phase of Lock-Exchange Case at t/t0=14 

 

5.4.2 Three-Dimensional Flow Structures  

The three-dimensional flow evolution of dense current in inertial and viscous phase (t/t0 =14) is 

presented in Figure 5-13 as the isosurface of instantaneous density field. A significant difference 

is observed in three-dimensional natures of leading front, current body and tail in slumping and 

viscous phase. As the lobes-cleft structures are continued to develop at front edge, lobes width 

becomes much bigger in inertial and viscous phase compare to slumping phase, reaching 

maximum width λmax=0.7H and mean width λmean =0.7H. As the front velocity and front height 

(a) 

(b) 

(c) 

(d) 
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reduces significantly at this stage of flow, the local Re also becomes small compare to slumping 

phase and correlation of lobes width with Re by Simpson 1972 are in good accordance with our 

results. The interface of dense current in Figure 5-13 shows a density contour of �̅� = 0.2 which 

is much less than that of slumping phase indicates dilution of original dense fluid in much extent 

at this stage of flow. Two-dimensional K-H rolls up can be seen just behind the head distorted in 

span and plays a key role to form three-dimensional stabilities in the wake. As we see three-

dimensional structures just behind the head extend to x/H≈5, instabilities are less turbulent in tail 

region as the strength dissipates at phase quite drastically and viscous force becomes dominant. 

 

Figure 5-13. Isosurface of density in viscous phase for lock-exchange case at t/t0 =14 

 

Similar to slumping phase, we also analyze the wall-normal vorticity (ωy) structures in inertial 

and viscous phase. Figure 5-14 illustrates isosurface of ωy where the dominant value of ωy≈1 is 

realized. The vortical structures of the current at head and body are qualitatively very similar to 

those in slumping phase. From the front view of isosurface (Figure 5-14a), it can be seen that 

vortical structures remain within the height discussed previously in channel height section. K-H 

billows are observed behind the head asymmetrically distributed in span direction and uneven in 

height. Vorticity streaks are also observed in shear interface which are significantly lower in 
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length (x/H≈3) compare to those in slumping phase (Figure 5-14b). Small scale three-

dimensional vortical structures are seen following the vortical streaks in upstream direction. Near 

the wall, strong vortical structures are observed which embedded only current head region. One-

sided cane like vortices and hairpin vortices are also observed in the wake of the flow (Figure 

5-14a). No activities are observed in tail region leaving a quiet and calm zone as the forward and 

backward flow dissipates at this stage of flow (Figure 5-14). 

 

Figure 5-14. Wall normal vorticity (ωy) in viscous phase at t/t0=14 (a) front view, (b) top view, 

(c) perspective view 

To investigate the mixing comprehensively in inertial and viscous phase, we also bring the 

streamwise vorticity (ωX) in considerations similar to slumping phase. Instantaneous isosurface 

of streamwise vorticity is presented in Figure 5-15 as front, top and perspective view. 
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Qualitatively the vorticity structures are similar to slumping phase, but the strength of dominant 

vorticity is very small as ωX≈0.02 compare to those of slumping phase. Some pockets of high 

strength vortical structures are seen in top view, perhaps originated from high gradient of 

streamwise velocity. Vortical structures are small in size and less energetic as the flow dissipates 

drastically in viscous phase. However, presence of those secondary vortices apparently shows the 

evidence of mixing, but with small scale compare to those in slumping phase. 

 

Figure 5-15. Streamwise vorticity (ωX) in viscous phase at t/t0 = 14 (a) front view, (b) top view, 

(c) perspective view 

5.4.3 Energetics in Inertial and Viscous Phase 

As we have already discussed, in inertial and viscous phase the buoyancy at head reduces 

significantly, subsequently the current front velocity falls drastically indicates a less energetic 
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dense current with an active head and long calm tail region at this stage of flow. Similar to 

slumping phase, we present the energetic plots overlaying with density contour in a system of 

reference frame moving with front velocity (Figure 5-16 and Figure 5-17). The mean shear (

)
y

U




 contour plot suggests that turbulence are produced near the current head and density 

interfaces extended from nose to x/H≈4 upstream (Figure 5-16a). However, Reynolds or shear 

stress ( ''vu ) contour plots reveals that more energy are extracted from mean flow and transfer to 

turbulence mixing in the region of x/H=3~4 which we have also seen as the intense mixing zone 

from 2D and 3D density contour plots (Figure 5-16b). The buoyancy flux ( 'v ) is another 

indicator of energy transfer from mean flow to turbulence and can be seen in the region of 

0≤x/H≤4, 0 is being nose position. We observe a long tail zone with no activates in all energetic 

plots. 

It is also apparent that TKE production from shear (- )''
y

U
vu



and buoyancy (

y
v






 ' ) is 

restraint near the current head only which is also seen in mean shear and shear stress contour 

plots (Figure 5-17a, b). But owing to the transport of turbulent energy, mixing also occurs few 

nondimensional lock height distances from nose in upstream direction. TKE contour plot shows 

qualitatively similar plots in slumping phase having maximum TKE at y/H≈0.15. Strong TKE 

only observe upto x/H=3~4 unlike in slumping phase where substantial TKE is observed in tail 

region. Nevertheless, all the energetic terms in viscous phase are quantitavely lower than that of 

slumping phase indicates less energetic current and subsequently less mixing in shear interface 

which will be discussed in next section. 
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Figure 5-16. Energetics in inertial and viscous phase in reference frame overlaid by density 

contour (black dotted line) (a) mean shear (b) Reynolds Stress, (c) Buoyancy Flux 

(a) 

(b) 

(c) 
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Figure 5-17. Energetics in inertial and viscous phase in reference frame overlaid by density 

contour (black dotted line) (a) TKE Shear Production (b) TKE buoyancy production, (c) TKE 

 

5.5 Entrainment in Lock-Exchange System 

We employed volume increment method to evaluate the entrainment in different phases of lock-

exchange density current (Nayamatullah and Bhaganagar, 2016). Increment in the volume per 

unit width is calculated from the difference in volume per unit width (Vt) of mixed and original 

dense fluid at any time and the volume per unit width of original dense fluid (V0) and then 

normalized by unit volume of the current (based on the time scale (t), a length scale(𝑙)̅ , and a 

velocity scale(�̅�)). The volume change in the system represents the amount of ambient fluid that 

entrained into the current due to the turbulence in shear layer at the interface of density current 

(a) 

(b) 

(c) 
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and ambient fluid. The length of the current (𝑙)̅  is calculated between the nose and tail of the 

current for lock-exchange system whereas for constant flux cases the length of current is 

estimated as the distance of the nose from a reference point (x0). In this study we used x0 as 15% 

of domain length from the source of constant dense release for excluding the effect of artificial 

disturbance we put in the inlet. Velocity (�̅�)  is the mean front velocity (𝑈𝑓) of the current. 

 
𝐸 =

𝑉(𝑡) − 𝑉0(𝑡)

𝑡 ∗ 𝑙(̅𝑡) ∗ �̅�(𝑡)
 (3) 

The challenging aspects of calculating E using volume increment method is the estimation of 

volume of the fluid at a given time t. Interface identification approach has been used in this study 

to compute the volume of fluids (Nayamatullah and Bhaganagar, 2016).. In this approach, at first 

we identify the interface of mixed and ambient fluids to obtain the current height profile (h(x, t)) 

employing density threshold scheme for a specific density threshold value (ρc). Density 

threshold is the lowest density fluid that is originated due to the mixing in shear interface at the 

top of the dense current as stated in equation (4). In this study we used 10% density threshold 

value to obtain current height profie. 

 
𝜌(𝑥, 𝑦, 𝑡) = {

0 𝑤ℎ𝑒𝑛 𝜌(𝑥, 𝑦, 𝑡) < 𝜌𝑐

1 𝑤ℎ𝑒𝑛 𝜌(𝑥, 𝑦, 𝑡) > 𝜌𝑐
 (4) 

After evaluating the interfaces or density height profile the volume of mixed and original dense 

fluid V(t) and the volume of original dense fluid V0(t) is estimated at an instantaneous time (t) by 

integrating the density height profiles from tail to nose of the current, expressed as 

 
𝑉(𝑡) = ∫  𝒉(𝒙, 𝒕)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑋𝑓

𝑋𝑏

 𝑑𝑥  (5) 

 
𝑉𝑜(𝑡) = ∫  𝒉𝒐(𝒙, 𝒕)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑋𝑓

𝑋𝑏

 𝑑𝑥 (6) 
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where ℎ̅ is the height of mixed fluid, ℎ𝑜
̅̅ ̅ is the height of initial dense fluid and  Xf ,Xb are the 

position of nose , tail  of current and lock location respectively. Employing equation 5 and 6, the 

V(t) and V0(t) are computed for a lock-exchange case scaled by initial lock volume showed in the 

Figure 5-18b. 

The transition between the phases are demarcated in Figure 5-18a by the vertical sloid line on the 

basis of front velocity versus front location plot discussed before in Figure 5-1. Figure 5-18a 

shows that the volume of mixed fluid (V(t)) increase monotonically in slumping and viscous 

phase with slope 1/10 and 1/8 respectively. In slumping phase the mixing occurs only behind the 

head and current head contains original dense fluid. However in inertial and viscous phase, the 

current head start to dilute and mixing occurs all over the current owing drastic reduction in 

original dense fluid. This feature attributes the higher slope in inertial phase than that of 

slumping phase. The volume of original dense fluid (V0(t)) decreases monotonically and reaches 

to zero value at 𝑥𝐹̅̅ ̅≈8 in inertial phase and no original dense fluid is observed in viscous phase. 

Interestingly we also observe that the mixed fluid volume reaches to constant value at 𝑥𝐹̅̅ ̅=8∼9 

and continues to maintain a constant value in viscous phase for a brief time which eventually 

dissipates to zero at later time. 

As we have discussed before, the entrainment parameter (E) is obtained from the volume of 

mixed fluid scaled by a length scale, a time scale, and a velocity scale illustrated in Figure 5-18b 

for the lock exchange case in all the phases. We observe that E continues to reduce in all the 

phases of current evolution. 
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Figure 5-18. (a) Volume of Fluid in slumping and viscous phase, (b) Entrainment rate 

 

(a) 

(b) 
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5.6 Analysis on Constant Flux Case: 

In the following part of the section, flow properties would be illustrated for in a dense overflow 

density current case with flat bottom considering similar range of Re (~6000) to lock-exchange 

case. Dimensional scales are used here as appropriate scales for constant flux case are not 

available in literatures. 

5.6.1 Front Velocity and Current Height 

In dense overflow case, the front velocity remains constant after initial transition time (which is 

not included in the plot) within the domain size we consider in this study (Figure 5-19). The 

magnitude of the front velocity depends on primarily on inlet velocity of dense fluid entering 

into the domain and the density of original dense fluid which will be discussed in next section. 

The front velocity scaled with buoyancy term (g’Q)
1/3

 (Q is inflow discharge) provides a uniform 

value of  1.02 which is in good agreement with Monaghan et al (1999) experimental study.  

Employing 10% density threshold value, we estimate the current height profile at different time 

instances. The front height initially increases with time, but remain constant at later time. 

However, the height of the tail remains uniform equals to inlet height from very beginning to 

later stage of current evolution.   
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Figure 5-19. Front velocity vs time 

 

 

Figure 5-20. Height profile 
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5.6.2 Buoyancy at Current Head 

Similar to lock-exchange case, the nondimensional mean density at head(ρhead
′̅̅ ̅̅ ̅̅ ̅) , front height 

(hF
̅̅ ̅)and buoyancy at head (Bhead

̅̅ ̅̅ ̅̅ ̅ = ghead
′̅̅ ̅̅ ̅̅ ̅ ∗ hF

̅̅ ̅) are estimated by scaling original dense fluid 

density, channel height (H), and initial buoyancy respectively. Figure 5-21 shows that the mean 

density of fluid in current head reduces sharply; subsequently the buoyancy flux at head reduces 

without having constant phase unlikely in lock exchange case. However, the constant front 

velocity indicates that the spreading of current head is not only depending on buoyancy flux but 

also the inflow discharge of dense fluid into the domain. The constant feeding of dense fluid 

from the inlet source also dictates the behavior of current head advancement in downstream. This 

characteristic in dense overflow is quite different than lock-exchange case and thus flow 

structures and mixing behavior would be apparently different than that of lock-exchange case. 

 

Figure 5-21. Nondimensional reduced gravity, buoyancy at head, and front height versus time for 

lock-exchange case 
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5.6.3 Two-Dimensional Structures in Constant Flux Case 

Spanwise averaged 2D density contours in x-y plane at different time instances are presented for 

constant flux case in Figure 5-22. At earlier time of flow evolution, the K-H billows are started 

to form behind the head which continues to appear in later time. The current head becomes 

diluted sharply as can be also seen in Figure 5-21. Dominant mixing is observed just behind the 

head leaving a smooth thick tail with thin layer of mixed fluid wrapping the original dense fluid.  

The flow structures can also be clearly seen in isosurface of spanwise vortices (ωz) contour plots 

in x-y plane (Figure 5-23) where apparently turbulence came in burst behind the head owing to 

mixing mechanism in the dense currents at all times. Therefore in dense overflow case, the 

mixing occurs near the current head is qualitatively similar to inertial and slumping phase in 

lock-exchange case where we have seen an active current head, but a thin tail region unlikely in 

dense overflows. 

 

Figure 5-22. 2D density contours at (a) t=5s and (b) t=15s in dense overflow case 

 

(a) 

(b) 

(a) 

(b) 
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Figure 5-23. 2D spanwise vorticity contours at (a) t=5s and (b) t=15s in dense overflow case 

 

To understand the flow structures implicating mixing in dense overflow cases thoroughly, we 

also investigate the streamwise velocity (Ux) and vertical velocity (Uy) components in x-y plane 

(Figure 5-24). We observe that the dense current runs with a constant characteristics streamwise 

velocity with having the distinctive overlying reverse flow of ambient fluid only around current 

head, showing difference in nature compare to lock-exchange case (Figure 5-24a,b). From the 

snapshot of vertical velocity contour at different time instances, it reveals that dense current 

spreads with positive vertical velocity at nose while negative vertical velocity observed behind 

the nose and intermittently throughout the length of current. A strong negative vertical velocity 

zone (blue color in Figure 5-24c,d) is detected behind the overhanging nose also known for 

strong mixing zone from previous 2D density and vorticity contour plots.  

 

 

 

 

(a) 

(b) 
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Figure 5-24. Streamwise velocity and wall-normal velocity at (a)/(c) t=5s and (b)/(d) t=15s in 

dense overflow case 

 

5.6.4 Three-Dimensional Structures 

Similar to lock-exchange case, we interrogate the three-dimensional structures in dense overflow 

case for better understanding in entrainment of ambient fluid into dense current. The three-

dimensional structures in the interface are visualized in Figure 5-25 in terms of density 

isosurface in the range of 0.5≤ ρ ≤1.0. We observe a thin layer of mixed fluid in tail portion 

whereas the head is formed with mixed fluid as current spread downstream in time. The K-H 

rolls-up are seen just behind the head, distorted in span direction to break down in three-

dimensional structures at later time. The interaction of these complex structures with lobe-cleft 

(a) 

(b) 

(c) 

(d) 
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instabilities at current nose enhances the mixing behind the current head. The lobe-cleft 

structures are seen to develop very early in dense overflow density current systems. With the 

advancement of time, we observe the formation and development of lobe-clefts structures where 

we can see that few lobes brake down by clefts sometimes and two adjacent lobes merge together 

to form a bigger lobes in next time instances. It reveals that the mean width of the lobes remains 

approximately uniform as λmean=0.15H and maximum width of lobes increase with time reaches 

λmax=0.3H in this scope of study. 

Figure 5-26 shows the isosurfaces of wall-normal vorticity (ωy) in dense overflow case as front 

view, top view, and perspective view at time=15s similar to lock-exchange case. Small scale 

vorticity structures are seen all over the dense current while mixing occurs only behind the 

current head. Due to the discharge inflow at inlet, the tail has small scale 3D structures which do 

not have strong influence on mixing. Vorticity streaks are observed in top view of wall-normal 

isosurface plot comparable with vorticity streaks in slumping phase of lock-exchange case. 

Strong turbulence burst are seen near current head indication strong mixing zone. Hairpin type 

vortices are also observed in the body of the dense current. In terms of mixing behavior, the 

dense overflow case shows resemblance with inertial and viscous phase, but the flow structures 

in tail is very different in dense overflow case. 
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Figure 5-25. 3D density contour in dense overflow case at different time instances, (a) t=5s, (b) 

t=10s, and (c) t=15s 

 

(a) 

(b) 

(c) 
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Figure 5-26. Wall normal vorticity (ωy) in dense overflow case at t=15s (a) front view, (b) top 

view, (c) perspective view 

 

5.6.5 Energetics 

Corresponding to the energetics analysis on lock-exchange case, we also analyze the energetic 

terms in this section for dense overflow case. Figure 5-27 illustrate the mean shear ( )
y

U




, 

Reynold or shear stress ( ''vu ), and buoyancy flux ( 'v ) overlaid by density contour in reference 

frame. We observe negative mean shear occurs near the head and in the interface while positive 

mean shear near occurs the wall due to no-slip boundary condition. The transfer of energy from 
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mean flow to turbulence mixing appears behind the head are visualized by the shear stress and 

buoyancy flux in Figure 5-27. 

 

Figure 5-27. Energetics in dense overflow case in reference frame overlaid by density contour 

(black dotted line) (a) mean shear, (b) Reynold Stress, (c) Buoyancy Flux 

 

The TKE production from shear (- )''
y

U
vu



and buoyancy (

y
v






 ' ) is observed just behind the 

current head and gradually diminish away from the current head further upstream (Figure 5-28). 

In all cases, the density contour captures the interfaces and the activities appear within this 

interface. However, the maximum TKE apparently is observed at y/H=0.1 which is an excellent 

(a) 

(b) 

(c) 
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match with experimental studies of Kneller et al. (1999) and lock-exchange case discussed 

above.  

 

Figure 5-28. Energetics in slumping phase in reference frame overlaid by density contour (black 

dotted line) (a) TKE production from shear, (b) TKE production from buoyancy, (c) TKE 

   

5.6.6 Entrainment in Dense Overflow 

As we have mentioned before, the entrainment parameter is evaluated employing volume 

increment method the volume of mixed fluid (V(t)) and original dense fluid (V0(t)) are presented 

in Figure 5-29a against time. We observe that volume of mixed fluid and original dense fluids 

are monotonically increased with time which is very unlikely in lock-exchange case. As the front 

velocity remain uniform, with increasing time and length scale, the entrainment parameter 

(a) 

(b) 

(c) 



137 

 

reduces gradually with time within the scope of our study (Figure 5-29b). However the trend of 

entrainment plots is qualitatively similar for both lock-exchange and dense overflow cases. 

 

Figure 5-29. (a) Volume of Fluid, (b) Entrainment rate in dense overflow case 

(a) 

(b) 
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5.7 Summary 

In this study we investigate the flow properties, 2D/3D flow structures, energetics, and mixing 

for different phases of lock-exchange cases respectively employing 3D LES simulations. For 

lock-exchange case in slumping phase, we observe that bore advance with maximum speed of 

1.5±0.05 time of front velocity and eventually overtakes the front of the flow in the region of 6≤ 

𝑥𝐹̅̅ ̅ ≤8, sometime called ‘slumping point’. The observation of bore velocity is comparable with 

the experimental data of Berson (1958), Kneller et al. (1999), and Sher and Woods (2015). In 

slumping phase, the nondimensional front height of current remaines constant within 0.5±0.05 

and 0.4±0.02 for threshold and Shin et al. (2004) approach respectively. The results derived from 

Shin method is an excellent match with experimental studies of Marion et al. (2005) and Sher 

and Woods (2015). The mean height of the current in slumping phase is approximately 0.38H 

and 0.36H for threshold and Shin et al. (2004) approach respectively. As the current travels 

almost 10 lock length beyond the lock gate, the mean depth of the current head in inertial and 

viscous phase reduced to approximately 0.25H and 0.2H for threshold and Shin et al. (2004) 

approach respectively The mean density at head reduces to 0.65 at the end of slumping phase and 

drastically diminishes at inertial and slumping phase to reach around 0.4. As the buoyancy at 

head remains uniform, the front spreads downstream with a uniform velocity in slumping phase 

and a sharp decline in buoyancy at head is observed in inertial and viscous phase. The constant 

value of front height ℎ𝐹
̅̅ ̅≈0.45 in slumping phase is an excellent match with previous 

experimental (Marino et al. 2005) and numerical studies (Cantero et al. 2007). We observe 

differences in 2D and 3D structures for slumping and viscous phase. At initial stage, the 

coherence structures are seen in 2D density contours and isosurface of density and vorticity 

plots. The interaction of 2D structures with 3D structures (lobe-cleft instabilities at nose and 
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complex structures at current body) enhance the mixing in shear interface in slumping phase. 

The energetic plots show strong zone of turbulence production which starts from leading edge 

and stretches upto tail of dense current 9 slumping phase. On the other hand, current head 

becomes diluted and weak 2D/3D structures are observed on the wake of current flow at inertial 

and viscous phase. Mixing can only be seen just behind the current which also supported by 

energetics in viscous phase.  

We also investigate the dense overflow case in terms of flow properties, flow structures, 

energetics, and mixing similar to lock-exchange case. It reveals that buoyancy at head starts to 

decline to some extent very soon after the dense current pumped into the domain and as the 

current spread in downstream unlikely in lock-exchange case. However the front velocity 

remains constant due to the fact that the inertial force emerge from continuous feeding of dense 

current through inlet led the current spread with uniform speed. The 2D structures show few K-H 

vortices early stage of dense flow leaving a smooth tail zone later time of flow evolution. Long 

vortices streaks and small scale vortices structures are also observed throughout the dense 

current. The energetic and mixing pattern are approximating the behavior of lock-exchange case 

in inertial and viscous phase, TKE production and mixing happening around the leading head. 
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CHAPTER SIX: ENTRAINMENT IN 2D ROUGH BOTTOM 

6.1 Introduction 

In the ocean, dense waters are generated in several regions, usually located at high latitudes, 

where either strong atmospheric cooling and/or ice formation with consequent brine rejection, 

contribute to increasing the water density. These waters may flow over a sill or through a 

constriction to form dense currents descending the continental slope, hence the name overflows. 

Examples of locations of such overflows are the Denmark Strait (Dickson and Brown 1994; 

Girton and Sanford 2003; Käse et al. 2003), the Faroe Bank Channel (Saunders 1990; Mauritzen 

et al. 2005), the Baltic Sea (Arneborg et al. 2007), and various locations along the Arctic 

(Aagaard et al. 1981) and Antarctic (Muench et al. 2009; Padman et al. 2009; Foster and 

Carmack 1976) continental shelves. Marginal seas where evaporation induces an increase in 

density, are other regions of dense water formation; for example, the Mediterranean (Baringer 

and Price 1997; Price et al. 1993), the Red Sea (Peters and Johns 2005; Peters et al. 2005), and 

the Persian Sea. 

Dense currents descend the continental slope for long distances before encountering the ocean 

bottom or interleaving at their level of neutral buoyancy. At the sill/constriction and during the 

descent, dense currents have been observed to entrain the surrounding ambient fluid. The final 

properties of their water masses are dictated by the amount and properties of the entrained fluid. 

Vertical profiles through the dense current have shown that the top of the current is a region with 

usually large velocity shear and low Richardson number which presents large turbulent 

displacements indicative of entrainment due to shear-driven mixing (Figure 2d and 2f of Peters 

and Johns, 2005). Recent studies (e.g. Cenedese and Adduce, 2010) focused primarily on the 

entrainment occurring in the shear region at the top of the dense current. In thick currents, where 
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the height is much larger than the bottom boundary layer thickness, mixing occurring in the 

bottom low Richardson number region contributes to the homogenization of the densest water 

mass, while most of the entrainment is confined to the top of the current. However, in thin dense 

currents, where the height is comparable to the bottom boundary layer thickness, bottom friction 

influences entrainment which is due to a combination of shear-driven turbulence at the top of the 

current and turbulent eddies generated by the bottom roughness. Thin dense currents can result 

from branching of larger overflows into canyons or around ridges (Sherwin and Turrel, 2005), 

and can be found in marginal basins like the Baltics (Umlauf and Arneborg, 2009a, b), but also 

in lakes (Dallimore et al., 2001) and in reservoirs (Hebbert et al. 1979; Fernandez and Imberger, 

2006). The findings of the proposed work may also apply to estuarine dynamics in which the 

denser water from the open ocean enters the estuary, and the entrainment and mixing between 

the ocean denser water and the river lighter water may be influenced by bottom roughness. 

Entrainment in density driven overflows is very significant phenomenon which is defined as the 

mixing of dense fluids with surrounding ambient fluids through interfacial shear layer, and thus 

changing the final properties (i.e., density of water) of the mixed fluids.  Entrainment is a 

dynamic process and the dynamics controlling the entrainment in dense currents are believed to 

have fundamental importance for understanding the formation, transport, and distribution of the 

densest water in the ocean transport. However, the dynamics of entrainment primarily depends 

on the dense current flow characteristics and the topography of the bottom surface on which 

dense current propagates in natural environment. Considering smooth bottom surface, most of 

the existing parameterizations for entrainment in dense currents account primarily for the shear-

induced entrainment at the interface between the dense flow and the ambient fluid, neglecting the 

effect from drag in bottom surface, especially in the slumping phase. But in nature, especially in 
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ocean, dense currents are in direct contact with bottom topography where roughness can be seen 

with significant disturbance for dense current propagation (Weissel et al. 1994). However the 

dynamics of dense overflow is significantly different in the case of rough bottom and the 

turbulence generated by roughness elements at the bottom boundary, which produces an 

enhanced drag, is intense and cannot be ignored. For dense currents having a height comparable 

to or smaller than the bottom boundary layer thickness, the turbulent eddies near the bottom, 

prompted by enhanced drag, should be large enough to entrain the ambient water lying above the 

dense current and should significantly influence the dense water properties.The effect of 

entrainment due to bottom roughness should therefore be included in the entrainment 

parameterizations, and the parameter regime in which bottom roughness is important be 

identified. 

Although the dynamics of gravity current propagating into a channel with smooth horizontal bed 

has been studied in numerous experimental (e.g. Huppert & Simpson 1980; Hallworth et al. 

1996; Kneller, Bennett & McCaffrey 1999; Shin, Dalziel & Linden 2004) and numerical (e.g. 

H¨artel, Meiburg & Necker 2000; Necker et al. 2005; Cantero et al. 2007; Hallez & Magnaudet 

2008, 2009; Ooi, Constantinescu & Weber 2009) works especially for gravity currents in lock-

exchange configurations, the physics of entrainment has received attentions by few (e.g. 

Cenedese and Adduce 2008, 2010; Wells et al. 2010; Ozgokmen et al. 2004). A few studies have 

also conducted for the flow dynamics of density current with roughness numerically and 

experimentally (e.g. Ozgokmen and Fisher 2008; Gonzalez-Juez et al. 2009, 2010; Tokyay et al. 

2011; Tanino et al. 2005), but none of them provided a vivid picture of entrainment dynamics 

and presented a entrainment parameterization considering bottom roughness. Ozgokmen and 

Fisher (2008) conducted their numerical study on dense overflows with bottom roughness (2D 
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and 3D sinusoidal ripples) and found that the distribution of entrainment is significantly different 

in the case of rough bottom where entrainment tends to initiate earlier (due to vertical motion 

induced by topography) and also terminate earlier (due to development of form drag) than that 

over smooth topography. Tokyay et al. (2011) showed that the square ribs and dunes on bottom 

surface create splash due to high degree of bluntness which induces strong mixing and 

entrainment at the head. With the recent advancements of computational power and technique, 

there is a good scope of conduct numerical study to explore the entrainment and mixing in dense 

overflows over rough bottom that occurs at such small scales.  

In the present study, two-dimensional Navier-Stokes is solved for entrainment parameterization 

on rough bottom (i.e. ribs, ripples). Gonzalez-Juez et al. (2009, 2010) also employed two and 

three-dimensional Navier-Stokes simulations to quantify the bottom drag on a square and 

circular cylinder passing by lock-exchange type gravity currents. They showed that the two-

dimensional simulations accurately capture the forces on roughness elements in initial stage, but 

a slight over prediction were seen in transient stage compare to three-dimensional simulation 

results as a result of more coherent Kelvin-Helmholtz vortices in two directions. On the basis of 

above observation, our two-dimensional simulations should give comparable results with three-

dimensional analysis 

In inertial flows where density is assumed to be constant, two types of roughness have been 

studied: k-type (roughness elements are sparsely spaced induce momentum exchange between 

external and near wall fluid) and d-type (roughness elements are densely spaced making it 

difficult for external flow to penetrate into this gap) (Perry et al. 1969, Bhaganagar and Chau, 

2015). Tani (1987) used the ratio of roughness spacing (λ) and roughness height(D) to 

characterized the regularly spaced ribs into k and d type. Jimenez (2004) observed d-type 
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roughness regime at the D/λ ratio of 0.15 or lower and D/λ value higher than the 0.15 is 

considered as k-type roughness. Tokyay (2011) presented roughness effect on lock exchange 

gravity currents based on D/λ ratio where his roughness cases were k-type. In this study, both k 

and d type roughness are discussed for ribs and ripples cases to illustrate the roughness effect on 

dense overflow and corresponding entrainment or mixing with ambient fluids. 

Improved understanding of the dynamics of these currents when they flow over a rough bottom 

bathymetry, and the development of relationships between the entrainment and roughness 

parameters has the potential to change the way mixing is parameterized in these flows.  In this 

study, we will discuss two dimensional numerical studies investigating the influence of bottom 

roughness on entrainment in a dense current flowing down a sloping bottom. Our numerical 

study will be focused on entrainment and dense currents dynamics over a range of rough 

bottoms, in which the shape (square and sinusoidal), and spacing (sparse vs. dense configuration) 

of the roughness elements will be varied. Our objectives of this study are: (i) Quantify the 

relationship between entrainment and non-dimensional parameters (Reynolds number, Froude 

number) and comparison the results with smooth bottom cases. (ii) Determine the influence of 

the spacing (k-type or d-type) of the roughness elements on the thickness of the bottom boundary 

layer in which turbulent eddies are expected to develop; (iii) We need to understand 

comprehensively how bottom roughness significantly enhanced drag on the velocity field and 

also enhanced the mixing between the two miscible fluids. and (iv)We also looked into the 

energy budget and showed results how kinetic, potential and dissipation energy compliance with 

energy conservation in density driven overflows. 
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6.2 Problem Formulation 

To represent the density-driven overflows, we employed constant flux type gravity currents 

where dense fluid flowing into the ambient fluid of a domain through a specific inlet (figure1). 

Similar type of setup has been used in the experiment study of Sequeiros et. al (2010) and in the 

numerical study of Tokyay and Garcia (2014) where they had smooth bottom. The dense fluid 

(ρ1) is allowed to flow at a rate of q(m2/s) per unit width through an inlet for lc distance until it 

hits the first roughness elements in a rectangular channel of height H and length L with a bottom 

slope of θ (Figure 6.1). The channel is filled with ambient fluid (ρo) before the dense fluid starts 

to flow. The top of channel assumed as free surface (slip boundary) and bottom as wall (no-slip 

boundary). Two type of roughness (ribs and ripples) are shown in the figure1. 
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Figure 6-1. Scheme of density driven overflows configuration with roughness in a sloping channel. (a) Ribs 

(b) 2D ripples 
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Table 6-1 summarize the flow and geometrical parameters of 2D LES simulations we performed 

to investigate roughness effect on entrainment in density-driven overflows. The λ/D=2, 6 cases 

considered as d-type roughness and λ/D=12 cases as k-type roughness defined by Jimenez 

(2004). The reduced gravity (g’) was adopted as 0.8 m/s2 and inflow discharge (q) was varied by 

changing the inlet height (h). The height of channel (H) and the length of smooth bottom (lc) 

were uniform for all the cases. Very mild slope(θ) (5%) was employed in all roughness cases. 

Table 6-1 Details of roughness parameters 

Case Inflow discharge, 

q (m
2
/s) 

λ/D h/D 

Ribs2D 0.00125,0.0025 2 1,2 

Ribs6D 0.00125,0.0025 6 1,2 

Ribs12D 0.00125,0.0025 12 1,2 

Ripples6D 0.00125,0.0025 6 1,2 

Ripples12D 0.00125,0.0025 12 1,2 

 

6.3 Flow Structures 

In constant density flows, the flow physics is strongly influenced by the shape of roughness 

elements besides the spacing between two consecutive roughness elements (Orlandi and 

Leonardi 2006). In the presence of roughness elements, the convective heat transfer also depends 

on the orientation and on the shape of the rough surface. Hence, in the present study of density 

overflows, two bottom roughness are adopted as square ribs and 2D ripples (sinusoidal) and 

based on the spacing of roughness we are presenting the analysis of 2D density contours for two 

cases: one d-type (λ/D=6) and one k-type(λ/D=12) of ribs and ripples respectively. To 
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understand the effect of roughness geometry on density currents, we are analyzing the 2D 

density contours at different downstream locations, for example, when the dense current reaches 

the first roughness elements (1m), and also further downstream locations at 1.5m, 2m, and 3m 

from inlet of the channel. As excluding the roughness shape and spacing, all other flow and 

geometrical parameters (i.e., inflow discharges, g’, roughness height etc.) are considered similar 

within the numerical simulations, we are showing the effects of shape and spacing of roughness 

on dense current overflows.  

All the figures (Figure 6-2 to Figure 6-5) of 2D density flow visualizations showed a common 

trend of having higher front height of dense currents at the same front locations for ribs cases 

compare to ripples cases despite having uniform height of roughness elements. When the dense 

current encounters the first roughness elements (Figure 6-2) which is located at 1m downstream 

from the inlet, current head jumps vertically causes a backward-propagating hydraulic jump for 

all the cases as a portion of kinetic energy of current head transforms to potential energy during 

the time the front rises above the first rough element . This abrupt variation in the flow direction 

creates a strong 
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Figure 6-2. 2D density contours at 1m downstream from the inlet 

turbulent eddies near the peak of each roughness elements which enhanced the mixing fluids at 

the front of dense current for all roughness cases. Due to the presence of rough bottom, the 

enhanced drag (mainly form drag) created by interaction of the front with the roughness element 

causes significant pressure increases on the upstream face of the roughness element, eventually 

causes adverse pressure gradient and front velocity of dense current reduces compare to smooth 

surface case. Since ribs have more bluntness in its front face, it produces more blockades in 

dense current compare to ripples cases and consequently the substantial pressure fluctuations are 

observed near the rib location than ripple cases. In figure 4, the time history of drag coefficient at 

1
st
 roughness element for ripples and rib (λ/D=12) cases showed that drag changes abruptly for 
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rib cases when density current passed causes intense turbulence and mixing compare to ripple 

cases where we can see some small peaks in drag coefficient. Tokyay (2011) also showed that 

the roughness with high degree of bluntness induces strong mixing and entrainment at the head 

of the current. Although the front height increases for ribs cases with time, the head of the front 

and the Kelvin-Helmholtz (K-H) instabilities are more stretched in ripple cases which is 

primarily due to the bluntness effect of front face of roughness elements (Figure 6-2 to Figure 

6-5) 

 

Figure 6-3. 2D density contours at 1.5m downstream from the inlet 

Besides roughness shape, the spacing between two consecutive roughness elements also 

contributes mixing in dense overflows which is justified from the Figure 6-5. Densely spaced 
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case of ribs (λ/D=6) showed higher pressure difference near 2
nd

 roughness element than sparsely 

configured rib ((λ/D=12) case. The enhanced drag due to the dense spacing triggered more 

turbulence and increase of current front height near rough body which causes the breakdown of 

K-H type of instabilities and ambient fluid entrains into the dense fluids for both ribs and ripple 

cases. As the front passes the crest of the more rough elements (Figure 6-7 and Figure 6-8) and 

travels further downstream distance, it tends to reattach the bed and the effect of spacing of the 

rough elements on flow dynamics becomes more conspicuous. More spacing between the 

roughness elements allows the front of the dense current to regain its energy to travel 

downstream with higher velocity and more dense fluid is trapped in between the rough element 

causes more mixing with ambient fluid. In our current analysis of the cases we are not seeing any 

robust and distinguished effect on density currents other than in the case of d-type roughness 

causes higher front height, lower front velocity and more eddies and instability in the current 

body compare to k-type roughness cases. So the d-type and k-type roughness might not be the 

appropriate demarcation for idealized roughness in buoyancy driven flows. 

 

Figure 6-4. Time history of drag coefficient at 1st roughness elements for ribs and ripples 
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After passing couple of ribs/ripples (front at 2 and 3m), more vigorous turbulence eddies in the 

head and body parts of current can be seen in ribs cases compare to ripple cases and the head of 

front is breakdown and almost detached from the body parts for ribs cases as it propagates over 

the ribs whereas we can see only stretching in the front for ripple cases. This characteristics of 

ribs is appeared earlier time with lower spacing cases (6D), where in ripple cases, we can see a 

well-mixed front head even after it passes some ripples (Figure 6-2 and Figure 6-3). 

Figure 6-6 shows the pressure gradient along stream-wise direction at time=20s for ribs, ripple 

and smooth cases at the crest of roughness elements. For ribs case, the spatial variations of 

pressure gradient is more rapid compare to ripple and smooth cases due to the sharp front edge of 

rib case. Smooth case shows slow variations of pressure gradient with small peaks as dense 

current doesn’t encounter any roughness elements. This implies that the disturbances and 

instabilities ejected from the rib elements into the current are significantly stronger than ripple 

case showing the effect of shape of roughness elements on entrainment. These events are also 

qualitatively delineated in 2D density contour flow visualizations ((Figure 6-2, Figure 6-3, 

Figure 6-7 and Figure 6-8). 
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Figure 6-5. Time history of drag coefficient at 2nd roughness elements for ribs and ripples 

 

If we split the body of current as region of dense fluid and mixed fluid, we can see the length of 

mixed fluid is larger for ripple cases than rib cases. For example, the length of dens fluid in case 

of Ripples12D is 2m (approx.) whereas that is 1.67m (approx.) for Ribs12D case (Figure4). For 

body and trail part of the current, we can see most mixing in the case of Ribs6D as ribs generate 

more turbulence eddies and the dense spacing also invoke additional instabilities.  
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Figure 6-6. Pressure gradient for ribs, ripples and smooth case at time=20s 
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Figure 6-7. 2D density contours at 2m downstream from the inlet 
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Figure 6-8. 2D density contours at 2m downstream from the inlet 

 

6.4 Front Location and Front Velocity 

6.4.1 Front Location and Front Velocity 

Figure 6-2 shows that dense currents take 8s to confront the first roughness elements for all the 

cases as it passed same distance of smooth bottom until it hits the obstacles which also can be 

seen in Figure 6-6. But travelling to the downstream, the roughness shape and spacing causes 

impact on front velocity as Figure 6-3 shows that Ribs6D takes more time to travel same 

distance of 2m than other roughness cases. For densely spaced ribs/ripples cases, the dense fluid 
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travel less as it needs to more energy to pass more ribs within the same space propagation. 

Therefore bluntness effect of ribs and densely spaced roughness elements of Ribs6D dwindled 

most in front velocity among all the cases. However with the same spacing of roughness for ribs 

and ripple cases, the ribs cases take more time to travel the equal distance than ripple cases. 

Figure 6-9a shows the temporal evolution of front location of density current for rough cases 

alongside with smooth bottom case. Up to 1m of downstream distance, dense currents in rough 

cases travel the distance with exact same time. To travel 2.5m distance, dense current in Ribs6D 

case takes 24s that is 33% times higher than smooth bottom case(18s) and 23% times higher than  

Ripples6D case (19.5s).  

  

Figure 6-9. (a) Temporal evolution of front location on rough and smooth cases, (b) Front 

velocity at different front location on rough and smooth cases 

Similar trend can also be seen in front velocity for all the rough cases and smooth bottom case. 

But we can see some distinguished difference in front velocity for ribs and ripple cases. 

Slumping phase of density current in smooth case has been showed in several studies, but Figure 
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6-9b shows that slumping phase is also seen in ripple roughness cases whereas ribs cases rarely 

show slumping phase with densely spaced cases.  

6.5 Entrainment Dependency on Non-Dimensional Numbers 

Similar to smooth bottom density current cases, Entrainment showed strong dependency on Re 

regardless the shape and spacing of rough bottom. For uniform flow and geometric parameters, 

ribs cases showed lower Re than ripple cases, but entrainment changed accordingly with the Re 

for all the rough cases (Figure 6-10a) In this study, the Re varied from 1500 to 9000. 

Figure 6-10b showed the dependence of entrainment on Fr where all the roughness cases 

belonged to subcritical (Fr<1) condition. With higher Fr, entrainment was greater although we 

recognized that having similar range of Fr the entrainment was higher for ripple cases as Re was 

higher for ripple cases than ribs within the similar conditions. Hence to see the combined effect 

of Re and Fr on entrainment, another plot of E versus product of Fr and Re (FrRe) was plotted 

(Figure 6-10c) where we noticed the trend of increasing E with FrRe. 

To investigate the effect of inflow discharge (q) on entrainment for ribs and ripples cases, inlet 

height (h) has been varied. Figure 8 showed the dependency of Re on h/d ratio and 

corresponding entrainment parameter (Figure 6-11). As h/d ratio increased, alternatively inflow 

discharge increased, the Re approached to higher value and consequently entrainment increased 

for both ribs and ripple cases. Investigating the effect of uniform inflow discharge (for example, 

h/D=1) for ribs and ripple cases, we observed higher Re for ripple case and corresponding higher 

entrainment compare to ribs cases. 
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Figure 6-10. Entrainment parameter (E) versus (a) Re (b) Fr (c) ReFr 

However we also investigated the roughness effect on entrainment comparing the entrainment at 

fixed downstream location for a smooth case and two ripple cases. Considering alike flow and 

geometric parameters for both rough and smooth cases, we obtained larger Re (2680) for smooth 

cases as front velocity increased without having any obstacles than Re (1850) for rough cases at 

2m downstream from the inlet . Although Re was higher for smooth case, we observed larger 

entrainment parameter for ripple cases (0.0075) than smooth case (0.0058) due to enhanced 

mixing for roughness. 



160 

 

 

Figure 6-11. Entrainment parameter (E) versus Re at 2.5 m from inlet 

6.6 Summary 

In this two dimensional numerical study, we investigated the physical aspects of bottom 

roughness on entrainment for density-driven overflows. Two type of idealized roughness: d-type 

(λ/D=6) and k-type(λ/D=12)  were considered for current analysis whereas the shape (square ribs 

and sinusoidal ripples) also varied. Although the demarcation of roughness as d-type and k-type 

has been robust in constant density flows, in our present buoyancy driven density current study, 

we did not observed distinctive impact on flow physics and entrainment for those idealized type 

of roughness. However densely spaced (λ=2D, 6D) cases showed less front velocity as roughness 

caused hindrance on density current propagation due to enhanced drag and produced additional 

eddies and instabilities compare to sparsely distributed roughness(λ=12D case) . Similarly, the 

shape of roughness accounted for more generated more eddies and instabilities in the front and 

body part of the dense currents of ribs cases although it causes less front velocity due to the 

bluntness effects of front face of roughness elements . Similar to the smooth cases, we observed 

the trend of increasing entrainment with increasing Re, Fr and the product of Fr and Re. Finally 
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we showed that the entrainment increased significantly for rough cases compare to smooth cases 

within the similar flow and geometric conditions. 
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CHAPTER SEVEN: CONCLUSION AND RECOMMENDATION 

7.1 Conclusion 

A robust LES tool is developed for smooth wall of 2-D/3-D simulations with high Re cases for 

lock-exchange and constant flux density current where the mixing in gravity current is 

investigated for a sparse range of Re cases 1500<Re<32000 which is unprecedented. This is one 

of the first studies demonstrating the shear (SG) and buoyancy generated (BG) turbulence 

production causes mixing and slope increases buoyancy generated (BG). As the lock aspect ratio 

(L/H) changes the differences in flow dynamics are identified. This study is demonstrated based 

on turbulence physics of both lock-exchange and constant flux cases. It is observed that the 

potential energy at head is the controlling factor for the flow evolution irrespective of lock aspect 

ratio. It is also identified that the inertial forces driving mechanisms for turbulence production & 

mixing. It reveals that the Entrainment rate and mixing efficiency are reliable metrics to quantify 

mixing.  Mixing is not driven by g’ (traditional) but inertial forces. This is the 1st LES study to 

demonstrate role of Re on mixing for Fr range of 0.55≈0.65. For same inertial forces (Re), 

Continuous vs. instantaneous release shows differences in mixing mechanisms and patterns 

having lower mixing at head and smoothly increases upstream towards the lock gate for lock-

exchange and opposite for continuous release cases. This is the 1st study to show differences in 

turbulence structures and mixing mechanisms. 

In chapter three, a numerical investigation is performed to understand the flow dynamics of 2-D 

density currents over sloping surfaces. Large eddy simulation (LES) is conducted for lock-

exchange release currents and overflows. 2-D Navier-Stokes equations are solved using the 

Boussinesq approximation. The effects of the lock aspect-ratio (height/length of lock), slope, and 

Reynolds number on the flow structures and turbulence mixing have been analyzed. Results have 
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confirmed buoyancy in head of the current for 2-D currents is not conserved which contradicts 

the classical thermal theory. The lock aspect-ratio dictates the fraction of initial buoyancy which 

is carried by the head of the current at the beginning of the slumping (horizontal) and 

accelerating phase (over a slope), which has important implications on turbulence kinetic energy 

production, and hence mixing in the current. For lock-exchange flows over a slope, increasing 

slope angle enhances the turbulence production. Increasing slope results in shear reversal within 

the density current resulting in shear-instabilities. Differences in turbulence production 

mechanisms and flow structures exist between the lock-exchange and constant-flux release 

currents resulting in significant differences in the flow characteristics between different releases.   

In chapter four, mixing in buoyancy-driven stratified flow is investigated which can be best 

represented by two non-dimensional parameters: ‘entrainment rate (E)’ and ‘mixing efficiency 

(μ)’. This study investigates the differences in mixing between 2-D and 3-D dense currents with 

a bottom slope upto 100 for a wide range of Reynolds, 1500<Re<32000, by employing high-

resolution large eddy simulations (LES). Numerical evaluation of entrainment from first 

principles is demonstrated. The 2-D simulation predicts the flow properties quite accurately 

having similar results as 3-D simulations, at least over initial stage of current evolution. 

However, comparing E from 2-D simulations are up-to 2 times larger than those of 3-D 

simulations which ranges from 0.02<E<0.1. The results demonstrate strong correlations of E and 

μ with Re within the wide span of Re cases for subcritical Fr within 0.50-.65.  The results 

demonstrate μ values are in the range of 0.11±0.02 for 3-D and in the range of 0.14±0.01 for 2-D 

lock-exchange cases which is smaller than the extensively used value of 0.2 by oceanography 

community to compute mixing in the ocean. Differences in mixing behavior exist between lock-

exchange and dense over flow density current systems. 
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In chapter five, the flow properties, 2-D/3-D flow structures, energetics, and mixing for different 

phases of lock-exchange cases are investigated respectively employing 3-D LES simulations. 3-

D simulation results predict the flow properties quite well compare to experimental studies. The 

co-efficient of power law in front velocity vs time plot is consistent with previous 

DNS/experimental results. Bore velocity 1.5±0.05 time of front velocity comparable with 

previously found 1.35±0.05 time of front velocity. Mean height of the current in slumping phase 

is approximately 0.38H consistent with previous experimental studies. The constant value of 

front height (hf) ≈0.45 in slumping phase is an excellent match with previous experimental. 

Significant difference in slumping and viscous phase is observed in terms of flow properties, 2D 

and 3D structures, energetics and mixing. Investigating the dense overflow case, it is observed 

that long vortices streaks and small scale vortices structures compare to lock-exchange within 

same Re range. 

In chapter six, two dimensional numerical study is performed considering the physical aspects of 

bottom roughness on entrainment for density-driven overflows. Our numerical study is focused 

on entrainment and dense currents dynamics over a range of rough bottoms, in which the shape 

(square and sinusoidal), and spacing (k-type and d-type) of the roughness elements is varied. We 

showed that roughness elements ejected more disturbances and instabilities besides the shear 

interface in fluids due to enhanced form drag around rough bottom which is apparently account 

for higher entrainment in rough bottom cases. We also explained that the shape and spacing of 

roughness elements has potential importance on generating turbulence and thus enhance the 

mixing on rib (square) cases compare to ripple (sinusoidal) cases. Densely spaced (d-type) cases 

showed less front velocity as roughness caused hindrance on density current propagation due to 

enhanced drag and produced additional eddies and instabilities compare to sparsely distributed 
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roughness(k-type) .Finally, similar to the smooth cases, we also observed the trend of increasing 

entrainment with increasing Re, Fr and the product of Fr and Re. 

7.2 Future Recommendation 

The present numerical study illustrated that our LES solver can be successfully employed to 

predict and investigate mixing phenomenon, several flow features and quantities that are very 

difficult or impossible to determine or study experimentally. Using our LES model, further study 

can be suggested for enhanced investigation of mixing on gravity current flows. These include: 

 Investigation of mixing on moderate to high sloping gravity current cases which is seen 

in continental slope. 

 3D numerical study of mixing on constant flux cases has immense importance as most of 

the gravity currents in nature falls into that category. 

 3D Numerical study of mixing in density currents propagating over rough bottom which 

is the most realistic situations in natural environments 
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APPENDIX 

OpenFOAM Implementation: 

Numerical Solver 

The numerical solver is developed based on ‘buoyantBoussinesqPisoFoam’ in OpenFOAM-2.2.x 

platform. Rather PISO algorithm, we used PIMPLE algorithm which give more robust and 

converge results with LES capability in buoyancy driven density current problems. Following 

steps are taken while developing the solver: 

1. Solving three dimensional Navier-Stokes equations (momentum equation) 

(equation1)with Boussinesq approximation in UEqn.H. Boussinesq approximation is 

incorporated in line 26 and 27. 

2. // Solve the momentum equation   

3.    

4.    fvVectorMatrix UEqn   

5.    (   

6.        fvm::ddt(U)   

7.      + fvm::div(phi, U)   

8.      + turbulence->divDevReff(U)   

9.     ==   

10.        fvOptions(U)   

11.    );   

12.    

13.    UEqn.relax();   

14.    
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15.    fvOptions.constrain(UEqn);   

16.    

17.    if (pimple.momentumPredictor())   

18.    {   

19.        solve   

20.        (   

21.            UEqn   

22.         ==   

23.            fvc::reconstruct   

24.            (   

25.                (   

26.                   - fvc::interpolate(rhok)*(g & mesh.Sf())   

27.                   - fvc::snGrad(p_rgh)*mesh.magSf()   

28.                )   

29.            )   

30.        );   

31.    

32.        fvOptions.correct(U);   

33.    }  

  A transport or advection-diffusion equation for the density �̅� is solved in DEqn.H where 

rhok (in 27 line) gives the estimation of buoyancy flux after each time step that is used in 

momentum equation consequently. 
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1. {   

2.     alphat = turbulence->nut()/Sct;   

3.     alphat.correctBoundaryConditions();   

4.    

5.     volScalarField alphaEff("alphaEff", turbulence-

>nu()/Sc + alphat);   

6.    

7.     fvScalarMatrix DEqn   

8.     (   

9.         fvm::ddt(D)   

10.       + fvm::div(phi, D)   

11.       - fvm::laplacian(alphaEff, D)   

12.      ==   

13.         //radiation->ST(rhoCpRef, D)   

14.        fvOptions(D)   

15.     );   

16.    

17.     DEqn.relax();   

18.    

19.     fvOptions.constrain(DEqn);   

20.    

21.     DEqn.solve();   

22.    
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23.     //radiation->correct();   

24.    

25.     fvOptions.correct(D);   

26.    

27.     rhok = 1.0 - beta*(D - DRef);   

28. }  

34. Within the PIMPLE algorithm, the solver does not solve the continuity equation (2.1); 

instead, it solves a pressure Poisson equation to ensure the satisfaction of continuity or 

divergence free check which is implemented in pEqn.H. 

1.  {   

2.     volScalarField rAU("rAU", 1.0/UEqn.A());   

3.     surfaceScalarField rAUf("Dp", fvc::interpolate(rAU));   

4.    

5.     volVectorField HbyA("HbyA", U);   

6.     HbyA = rAU*UEqn.H();   

7.    

8.     surfaceScalarField phig(-

rAUf*fvc::interpolate(rhok)*(g & mesh.Sf()));   

9.    

10.     surfaceScalarField phiHbyA   

11.     (   

12.         "phiHbyA",   
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13.         (fvc::interpolate(HbyA) & mesh.Sf())   

14.       + fvc::ddtPhiCorr(rAU, U, phi)   

15.       + phig   

16.     );   

17.    

18.     while (pimple.correctNonOrthogonal())   

19.     {   

20.         fvScalarMatrix p_rghEqn   

21.         (   

22.             fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)

   

23.         );   

24.    

25.         p_rghEqn.setReference(pRefCell, getRefCellValue(p_rg

h, pRefCell));   

26.    

27.         p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.final

InnerIter())));   

28.    

29.         if (pimple.finalNonOrthogonalIter())   

30.         {   

31.             // Calculate the conservative fluxes   

32.             phi = phiHbyA - p_rghEqn.flux();   
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33.    

34.             // Explicitly relax pressure for momentum correc

tor   

35.             p_rgh.relax();   

36.    

37.             // Correct the momentum source with the pressure

 gradient flux   

38.             // calculated from the relaxed pressure   

39.             U = HbyA + rAU*fvc::reconstruct((phig -

 p_rghEqn.flux())/rAUf);   

40.             U.correctBoundaryConditions();   

41.             fvOptions.correct(U);   

42.         }   

43.     }   

44.    

45.     #include "continuityErrs.H"   

46.    

47.     p = p_rgh + rhok*gh;   

48.    

49.     if (p_rgh.needReference())   

50.     {   

51.         p += dimensionedScalar   

52.         (   
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53.             "p",   

54.             p.dimensions(),   

55.             pRefValue - getRefCellValue(p, pRefCell)   

56.         );   

57.         p_rgh = p - rhok*gh;   

58.     }   

59. }   

 All the fields and parameters used in the are defined in ‘createFields.H’ and 

‘reatTransportProperties.H’ files. 

35. Within the PIMPLE algorithm, at first the UEqn.H (momentum) and DEqn.H (transport) 

are solved in pressure-velocity PIMPLE corrector loop and then pEqn.H is solved in 

pressure corrector loop until the solution converge. This algorithm is implemented in 

‘buoyanBoussinesqPimpleDensityFoam.C’ file. 

1.  Info<< "\nStarting time loop\n" << endl;   

2.    

3.    while (runTime.loop())   

4.    {   

5.        Info<< "Time = " << runTime.timeName() << nl << endl;   

6.    

7.        #include "readTimeControls.H"   

8.        #include "CourantNo.H"   

9.        #include "setDeltaT.H"   
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10.    

11.        // --- Pressure-velocity PIMPLE corrector loop   

12.        while (pimple.loop())   

13.        {   

14.            #include "UEqn.H"   

15.            #include "DEqn.H"   

16.    

17.            // --- Pressure corrector loop   

18.            while (pimple.correct())   

19.            {   

20.                #include "pEqn.H"   

21.            }   

22.    

23.            if (pimple.turbCorr())   

24.            {   

25.                turbulence->correct();   

26.            }   

27.        }   

28.    

29.        runTime.write();   

30.    

31.        Info<< "ExecutionTime = " << runTime.elapsedCpuTime()

 << " s"   
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32.            << "  ClockTime = " << runTime.elapsedClockTime()

 << " s"   

33.            << nl << endl;   

34.    }   

35.    

36.    Info<< "End\n" << endl;   

37.    

38.    return 0;  

 

Routines for Smooth Wall Case: 

These are the following steps for building a smooth wall case and run in parallel: 

1. Mesh Generation:  

OpenFOAM always uses three dimensional Cartesian coordinate system which generates 

geometries in 3 dimensions. By default, OpenFOAM solves the case in 3 dimensions but 

can be instructed to solve in 2 dimensions by specifying a special ‘empty’ boundary 

condition on boundaries normal to the (3rd) dimension for which no solution is required. 

At first, the flow domain is generated using ‘blockMeshDict’ file which is located in 

case-directory/constant/polyMesh. OpenFoam uses hexahedral blocks to define the 

domain geometry. The file first specifies coordinates of the block vertices; it then defines 

the blocks from the vertex labels and the number of cells within it; and finally, it defines 

the boundary patches and merges the blocks to get final complete geometry. Here is an 

example of blockMeshDict for 2D case: 
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Using ‘blockMesh’ command we can generate the domain. 

1.  convertToMeters 0.1;   

2.    

3. vertices   

4. (   

5.     (0 0 0)   

6.     (24 0 0)   

7.     (24 2 0)   

8.     (0 2 0)   

9.     (0 0 0.1)   

10.     (24 0 0.1)   

11.     (24 2 0.1)   

12.     (0 2 0.1)   

13. );   

14.    

15. blocks   

16. (   

17.     hex (0 1 2 3 4 5 6 7) (1200 200 1) simpleGrading (1 5 1)

   

18. );   

19.    

20. edges   
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21. (   

22. );   

23.    

24. boundary   

25. (   

26.    inlet   

27.     {   

28.         type wall;   

29.         faces   

30.         (   

31.             (0 4 7 3)   

32.         );   

33.     }   

34.     outlet   

35.     {   

36.         type wall;   

37.         faces   

38.         (   

39.             (2 6 5 1)   

40.         );   

41.     }   

42.     bottom   

43.     {   



177 

 

44.         type wall;   

45.         faces   

46.         (   

47.             (1 5 4 0)   

48.         );   

49.     }   

50.     top   

51.     {   

52.        type        wall;   

53.        faces   

54.        (   

55.                   (3 7 6 2)   

56.        );   

57.     }   

58.     frontAndBack   

59.     {   

60.        type            empty;   

61.        faces        (   

62.                        (0 3 2 1)   

63.                        (4 5 6 7)   

64.                     );   

65.     }   

66. );   
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67.    

68. mergePatchPairs   

69. (   

70. ); 

2. Boundary and Initial, and Lock Conditions  

After completing the mesh generation we need to set initial and boundary condition for 

flow, density, pressure, and turbulence fields. All these files are stored in ‘0.org’ 

directory. As the boundary conditions are mentioned earlier in the chapter, we need to 

implement them in those files. Initial conditions are defined as internalFields in the code. 

For example, boundary condition for velocity(U) in 2D Lock-exchange case will be 

similar to following codes: 

1. dimensions      [0 1 -1 0 0 0 0];   

2.    

3. internalField   uniform (0 0 0);   

4.    

5. boundaryField   

6. {   

7.     inlet   

8.     {   

9.         type            zeroGradient;   

10.     }   

11.     outlet   



179 

 

12.     {   

13.         type            zeroGradient;   

14.     }   

15.     top   

16.     {   

17.         type            zeroGradient;   

18.     }   

19.     bottom   

20.     {   

21.         type            fixedValue;   

22.         value           uniform (0 0 0);   

23.     }   

24.     frontAndBack   

25.     {   

26.         type            empty;   

27.     }   

28. }  

and for pressure(p_rgh) the file would be: 

1. dimensions      [0 2 -2 0 0 0 0];   

2.    

3. internalField   uniform 0;   

4.    
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5. boundaryField   

6. {   

7.     inlet   

8.     {   

9.         type            fixedFluxPressure;   

10.         rho             rhok;   

11.         value           uniform 0;   

12.     }   

13.     outlet   

14.     {   

15.         type            fixedFluxPressure;   

16.         rho             rhok;   

17.         value           uniform 0;   

18.     }   

19.     top   

20.     {   

21.         type            fixedFluxPressure;   

22.         rho             rhok;   

23.         value           uniform 0;   

24.     }   

25.    

26.     bottom   

27.     {   
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28.         type            fixedFluxPressure;   

29.         rho             rhok;   

30.         value           uniform 0;   

31.     }   

32.    

33.     frontAndBack   

34.     {   

35.         type            empty;   

36.     }   

37. }   

For the lock, a separate box is created using ‘setFieldsDict’ and assigned the heavier density to 

this box. According to g’ we can calculate the density of heavy fluid or vice versa. The file looks 

similar below: 

1. defaultFieldValues   

2. (   

3.     volScalarFieldValue D 1000   

4. );   

5.    

6. regions   

7. (   

8.     boxToCell   

9.     {   
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10.         box (0 0 0) (0.6 0.2 0.418);   

11.         fieldValues   

12.         (   

13.             volScalarFieldValue D 1002.04   

14.         );   

15.     }   

16. );  

3. Perturbation of Density Field: 

The 1% perturbation of density field is done by writing the following code in job script 

on stampede: 

1. foamCalc randomise 1.0 D -time 0   

 

4. Physical Properties 

The physical properties (i.e., laminar viscosity, Schmidt number etc) are provided in 

‘trasportProperties’ file located in case-directory/constant. Here is one example: 

1. transportModel Newtonian;   

2.    

3. // Laminar viscosity   

4. nu              nu [0 2 -1 0 0 0 0] 1.01e-6 ;   

5.    

6. // Thermal expansion coefficient   

7. beta            beta [-1 3 0 0 0 0 0] 1e-03;   
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8.    

9. // Laminar Schmidt number   

10. Sc              Sc [0 0 0 0 0 0 0] 1;   

11.    

12. // Turbulent Schmidt number   

13. Sct             Sct [0 0 0 0 0 0 0] 1;   

5. Turbulence Model: 

As we use LES turbulence model, the type of model is defined in ‘turbulenceProperties’ 

file and the LES model parameters are defined in LESProperties. We are using dynamic 

Smagorinsky LES model for density current cases. 

6. Slope: 

Slope are defined in ‘g’ files located at case-directory/constant.  

7. Control of Simulation: 

Simulation start time, end time, time-steps, data write intervals, format of data writing, 

data precisions, courant number etc are defined in ‘controlDict’ file located at case-

directory/system. We can do put the code for time average of data within simulation time. 

Here is an example: 

1. application     buoyantBoussinesqPimpleDensityFoam;   

2.    

3. startFrom       startTime;   

4.    

5. startTime       0;   

6.    
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7. stopAt          endTime;   

8.    

9. endTime         15;   

10.    

11. deltaT          0.01;   

12.    

13. writeControl    adjustableRunTime;   

14.    

15. writeInterval   0.1;   

16.    

17. purgeWrite      0;   

18.    

19. writeFormat     ascii;   

20.    

21. writePrecision  6;   

22.    

23. writeCompression uncompressed;   

24.    

25. timeFormat      general;   

26.    

27. timePrecision   6;   

28.    

29. runTimeModifiable yes;   
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30.    

31. adjustTimeStep  on;   

32.    

33. maxCo           0.7;   

34. maxAlphaCo      0.7;   

35.    

36. maxDeltaT       1;   

37.    

38. libs ( "libOpenFOAM.so" "libdynamicSmagorinskyModel.so" ) ; 

  

39.    

40.    

41. functions   

42. {   

43.     fieldAverage1   

44.     {   

45.         type            fieldAverage;   

46.         functionObjectLibs ( "libfieldFunctionObjects.so" );

   

47.         enabled         true;   

48.         cleanRestart    true;   

49.         outputControl   outputTime;   

50.         fields   
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51.         (   

52.             U   

53.             {   

54.                 mean        on;   

55.                 prime2Mean  on;   

56.                 base        time;   

57.             }   

58.    

59.            D   

60.             {   

61.                 mean        on;   

62.                 prime2Mean  on;   

63.                 base        time;   

64.             }   

65.         );   

66.     }   

67. }   

8. Discretisation and linear-solver settings: 

We specifie the choice of finite volume discretisation schemes (div, grad, laplacian,time 

integration) in the fvSchemes dictionary in the system directory. The specification of the 

linear equation solvers and tolerances and other algorithm controls is made in the 

fvSolution dictionary, similarly in the system directory. Here is one example of 

fvSchemes and fvSolution: 
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1. ddtSchemes   

2. {   

3.     default          backward;//CrankNicolson 1.0;//Euler;   

4. }   

5.    

6. gradSchemes   

7. {   

8.     default         leastSquares;//linear;   

9. }   

10.    

11. divSchemes   

12. {   

13.     default         none;   

14.     div(phi,U)      bounded Gauss SFCD;//MUSCL;   

15.     div(phi,D)      bounded Gauss SFCD;//MUSCL;   

16.     div(phi,k)      bounded Gauss SFCD;//MUSCL;   

17.     div(phi,epsilon) bounded Gauss SFCD;//MUSCL;   

18.     div((nuEff*dev(T(grad(U))))) Gauss linear;   

19. }   

20.    

21. laplacianSchemes   

22. {   

23.     default         none;   
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24.     laplacian(nuEff,U) Gauss linear corrected;   

25.     laplacian(Dp,p_rgh) Gauss linear corrected;   

26.     laplacian(alphaEff,D) Gauss linear corrected;   

27.     laplacian(DkEff,k) Gauss linear corrected;   

28.     laplacian(DepsilonEff,epsilon) Gauss linear corrected;   

29.     laplacian(DREff,R) Gauss linear corrected;   

30. }   

31.    

32. interpolationSchemes   

33. {   

34.     default         linear;   

35. }   

36.    

37. snGradSchemes   

38. {   

39.     default         corrected;   

40. }   

41.    

42. fluxRequired   

43. {   

44.     default         no;   

45.     p_rgh           ;   

46. } 
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fvSolution file: 

1. solvers   

2. {   

3.     p_rgh   

4.     {   

5.         solver          PCG;   

6.         preconditioner  DIC;   

7.         tolerance       1e-8;   

8.         relTol          0.01;   

9.     }   

10.    

11.     p_rghFinal   

12.     {   

13.         $p_rgh;   

14.         relTol          0;   

15.     }   

16.    

17.     "(U|D|k|epsilon|R)"   

18.     {   

19.         solver          PBiCG;   

20.         preconditioner  DILU;   

21.         tolerance       1e-6;   
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22.         relTol          0.1;   

23.     }   

24.    

25.     "(U|D|k|epsilon|R)Final"   

26.     {   

27.         $U;   

28.         relTol          0;   

29.     }   

30. }   

31.    

32. PIMPLE   

33. {   

34.     momentumPredictor no;   

35.     nOuterCorrectors 1;   

36.     nCorrectors     2;   

37.     nNonOrthogonalCorrectors 0;   

38.     pRefCell        0;   

39.     pRefValue       0;   

40. }   

41.    

42. relaxationFactors   

43. {   

44.     fields   
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45.     {   

46.     }   

47.     equations   

48.     {   

49.         "(U|D|k|epsilon|R)" 1;   

50.         "(U|D|k|epsilon|R)Final" 1;   

51.     }   

52. }  
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